In Files

    • bignum.c
    • numeric.c
    • rational.c

    Parent

    Class/Module Index [+]

    Quicksearch
    No matching classes.

    Integer

    Holds values. You cannot add a singleton method to an object, any attempt to do so will raise a .

    Constants

    The version of loaded GMP.

    Public Class Methods

    sqrt(n) → integer click to toggle source

    Returns the integer square root of the non-negative integer n, i.e. the largest non-negative integer less than or equal to the square root of n.

    Integer.sqrt(0) #=> 0
    Integer.sqrt(1) #=> 1
    Integer.sqrt(24) #=> 4
    Integer.sqrt(25) #=> 5
    Integer.sqrt(10**400) #=> 10**200
    

    Equivalent to Math.sqrt(n).floor, except that the result of the latter code may differ from the true value due to the limited precision of floating point arithmetic.

    Integer.sqrt(10**46) #=> 100000000000000000000000
    Math.sqrt(10**46).floor #=> 99999999999999991611392 (!)
    

    If n is not an , it is converted to an first. If n is negative, a is raised.

     static VALUE
    rb_int_s_isqrt(VALUE self, VALUE num)
    {
     unsigned long n, sq;
     num = rb_to_int(num);
     if (FIXNUM_P(num)) {
     if (FIXNUM_NEGATIVE_P(num)) {
     domain_error("isqrt");
     }
     n = FIX2ULONG(num);
     sq = rb_ulong_isqrt(n);
     return LONG2FIX(sq);
     }
     else {
     size_t biglen;
     if (RBIGNUM_NEGATIVE_P(num)) {
     domain_error("isqrt");
     }
     biglen = BIGNUM_LEN(num);
     if (biglen == 0) return INT2FIX(0);
    #if SIZEOF_BDIGIT <= SIZEOF_LONG
     /* short-circuit */
     if (biglen == 1) {
     n = BIGNUM_DIGITS(num)[0];
     sq = rb_ulong_isqrt(n);
     return ULONG2NUM(sq);
     }
    #endif
     return rb_big_isqrt(num);
     }
    }
     

    Public Instance Methods

    int % other → real click to toggle source

    Returns int modulo other.

    See for more information.

     VALUE
    rb_int_modulo(VALUE x, VALUE y)
    {
     if (FIXNUM_P(x)) {
     return fix_mod(x, y);
     }
     else if (RB_TYPE_P(x, T_BIGNUM)) {
     return rb_big_modulo(x, y);
     }
     return num_modulo(x, y);
    }
     
    int & other_int → integer click to toggle source

    Bitwise AND.

     VALUE
    rb_int_and(VALUE x, VALUE y)
    {
     if (FIXNUM_P(x)) {
     return fix_and(x, y);
     }
     else if (RB_TYPE_P(x, T_BIGNUM)) {
     return rb_big_and(x, y);
     }
     return Qnil;
    }
     
    int * numeric → numeric_result click to toggle source

    Performs multiplication: the class of the resulting object depends on the class of numeric.

     VALUE
    rb_int_mul(VALUE x, VALUE y)
    {
     if (FIXNUM_P(x)) {
     return fix_mul(x, y);
     }
     else if (RB_TYPE_P(x, T_BIGNUM)) {
     return rb_big_mul(x, y);
     }
     return rb_num_coerce_bin(x, y, '*');
    }
     
    int ** numeric → numeric_result click to toggle source

    Raises int to the power of numeric, which may be negative or fractional. The result may be an , a , a , or a complex number.

    2 ** 3 #=> 8
    2 ** -1 #=> (1/2)
    2 ** 0.5 #=> 1.4142135623730951
    (-1) ** 0.5 #=> (0.0+1.0i)
    123456789 ** 2 #=> 15241578750190521
    123456789 ** 1.2 #=> 5126464716.0993185
    123456789 ** -2 #=> (1/15241578750190521)
    
     VALUE
    rb_int_pow(VALUE x, VALUE y)
    {
     if (FIXNUM_P(x)) {
     return fix_pow(x, y);
     }
     else if (RB_TYPE_P(x, T_BIGNUM)) {
     return rb_big_pow(x, y);
     }
     return Qnil;
    }
     
    int + numeric → numeric_result click to toggle source

    Performs addition: the class of the resulting object depends on the class of numeric.

     VALUE
    rb_int_plus(VALUE x, VALUE y)
    {
     if (FIXNUM_P(x)) {
     return fix_plus(x, y);
     }
     else if (RB_TYPE_P(x, T_BIGNUM)) {
     return rb_big_plus(x, y);
     }
     return rb_num_coerce_bin(x, y, '+');
    }
     
    int - numeric → numeric_result click to toggle source

    Performs subtraction: the class of the resulting object depends on the class of numeric.

     VALUE
    rb_int_minus(VALUE x, VALUE y)
    {
     if (FIXNUM_P(x)) {
     return fix_minus(x, y);
     }
     else if (RB_TYPE_P(x, T_BIGNUM)) {
     return rb_big_minus(x, y);
     }
     return rb_num_coerce_bin(x, y, '-');
    }
     
    -int → integer click to toggle source

    Returns int, negated.

     VALUE
    rb_int_uminus(VALUE num)
    {
     if (FIXNUM_P(num)) {
     return fix_uminus(num);
     }
     else if (RB_TYPE_P(num, T_BIGNUM)) {
     return rb_big_uminus(num);
     }
     return num_funcall0(num, idUMinus);
    }
     
    int / numeric → numeric_result click to toggle source

    Performs division: the class of the resulting object depends on the class of numeric.

     VALUE
    rb_int_div(VALUE x, VALUE y)
    {
     if (FIXNUM_P(x)) {
     return fix_div(x, y);
     }
     else if (RB_TYPE_P(x, T_BIGNUM)) {
     return rb_big_div(x, y);
     }
     return Qnil;
    }
     
    int < real → true or false click to toggle source

    Returns true if the value of int is less than that of real.

     static VALUE
    int_lt(VALUE x, VALUE y)
    {
     if (FIXNUM_P(x)) {
     return fix_lt(x, y);
     }
     else if (RB_TYPE_P(x, T_BIGNUM)) {
     return rb_big_lt(x, y);
     }
     return Qnil;
    }
     
    int << count → integer click to toggle source

    Returns int shifted left count positions, or right if count is negative.

     VALUE
    rb_int_lshift(VALUE x, VALUE y)
    {
     if (FIXNUM_P(x)) {
     return rb_fix_lshift(x, y);
     }
     else if (RB_TYPE_P(x, T_BIGNUM)) {
     return rb_big_lshift(x, y);
     }
     return Qnil;
    }
     
    int <= real → true or false click to toggle source

    Returns true if the value of int is less than or equal to that of real.

     static VALUE
    int_le(VALUE x, VALUE y)
    {
     if (FIXNUM_P(x)) {
     return fix_le(x, y);
     }
     else if (RB_TYPE_P(x, T_BIGNUM)) {
     return rb_big_le(x, y);
     }
     return Qnil;
    }
     
    int <=> numeric → -1, 0, +1, or nil click to toggle source

    Comparison-Returns -1, 0, or +1 depending on whether int is less than, equal to, or greater than numeric.

    This is the basis for the tests in the module.

    nil is returned if the two values are incomparable.

     VALUE
    rb_int_cmp(VALUE x, VALUE y)
    {
     if (FIXNUM_P(x)) {
     return fix_cmp(x, y);
     }
     else if (RB_TYPE_P(x, T_BIGNUM)) {
     return rb_big_cmp(x, y);
     }
     else {
     rb_raise(rb_eNotImpError, "need to define `<=>' in %s", rb_obj_classname(x));
     }
    }
     
    int == other → true or false click to toggle source

    Returns true if int equals other numerically. Contrast this with , which requires other to be an .

    1 == 2 #=> false
    1 == 1.0 #=> true
    
     VALUE
    rb_int_equal(VALUE x, VALUE y)
    {
     if (FIXNUM_P(x)) {
     return fix_equal(x, y);
     }
     else if (RB_TYPE_P(x, T_BIGNUM)) {
     return rb_big_eq(x, y);
     }
     return Qnil;
    }
     
    int == other → true or false click to toggle source

    Returns true if int equals other numerically. Contrast this with , which requires other to be an .

    1 == 2 #=> false
    1 == 1.0 #=> true
    
     VALUE
    rb_int_equal(VALUE x, VALUE y)
    {
     if (FIXNUM_P(x)) {
     return fix_equal(x, y);
     }
     else if (RB_TYPE_P(x, T_BIGNUM)) {
     return rb_big_eq(x, y);
     }
     return Qnil;
    }
     
    int > real → true or false click to toggle source

    Returns true if the value of int is greater than that of real.

     VALUE
    rb_int_gt(VALUE x, VALUE y)
    {
     if (FIXNUM_P(x)) {
     return fix_gt(x, y);
     }
     else if (RB_TYPE_P(x, T_BIGNUM)) {
     return rb_big_gt(x, y);
     }
     return Qnil;
    }
     
    int >= real → true or false click to toggle source

    Returns true if the value of int is greater than or equal to that of real.

     VALUE
    rb_int_ge(VALUE x, VALUE y)
    {
     if (FIXNUM_P(x)) {
     return fix_ge(x, y);
     }
     else if (RB_TYPE_P(x, T_BIGNUM)) {
     return rb_big_ge(x, y);
     }
     return Qnil;
    }
     
    int >> count → integer click to toggle source

    Returns int shifted right count positions, or left if count is negative.

     static VALUE
    rb_int_rshift(VALUE x, VALUE y)
    {
     if (FIXNUM_P(x)) {
     return rb_fix_rshift(x, y);
     }
     else if (RB_TYPE_P(x, T_BIGNUM)) {
     return rb_big_rshift(x, y);
     }
     return Qnil;
    }
     
    int[n] → 0, 1 click to toggle source

    Bit Reference-Returns the nth bit in the binary representation of int, where int[0] is the least significant bit.

    a = 0b11001100101010
    30.downto(0) {|n| print a[n] }
    #=> 0000000000000000011001100101010
    a = 9**15
    50.downto(0) {|n| print a[n] }
    #=> 000101110110100000111000011110010100111100010111001
    
     static VALUE
    int_aref(VALUE num, VALUE idx)
    {
     if (FIXNUM_P(num)) {
     return fix_aref(num, idx);
     }
     else if (RB_TYPE_P(num, T_BIGNUM)) {
     return rb_big_aref(num, idx);
     }
     return Qnil;
    }
     
    int ^ other_int → integer click to toggle source

    Bitwise EXCLUSIVE OR.

     static VALUE
    int_xor(VALUE x, VALUE y)
    {
     if (FIXNUM_P(x)) {
     return fix_xor(x, y);
     }
     else if (RB_TYPE_P(x, T_BIGNUM)) {
     return rb_big_xor(x, y);
     }
     return Qnil;
    }
     
    abs → integer click to toggle source

    Returns the absolute value of int.

    (-12345).abs #=> 12345
    -12345.abs #=> 12345
    12345.abs #=> 12345
    

    is an alias for .

     VALUE
    rb_int_abs(VALUE num)
    {
     if (FIXNUM_P(num)) {
     return fix_abs(num);
     }
     else if (RB_TYPE_P(num, T_BIGNUM)) {
     return rb_big_abs(num);
     }
     return Qnil;
    }
     
    allbits?(mask) → true or false click to toggle source

    Returns true if all bits of int & mask are 1.

     static VALUE
    int_allbits_p(VALUE num, VALUE mask)
    {
     mask = rb_to_int(mask);
     return rb_int_equal(rb_int_and(num, mask), mask);
    }
     
    anybits?(mask) → true or false click to toggle source

    Returns true if any bits of int & mask are 1.

     static VALUE
    int_anybits_p(VALUE num, VALUE mask)
    {
     mask = rb_to_int(mask);
     return num_zero_p(rb_int_and(num, mask)) ? Qfalse : Qtrue;
    }
     
    bit_length → integer click to toggle source

    Returns the number of bits of the value of int.

    "Number of bits" means the bit position of the highest bit which is different from the sign bit (where the least significant bit has bit position 1). If there is no such bit (zero or minus one), zero is returned.

    I.e. this method returns ceil(log2(int < 0 ? -int : int+1)).

    (-2**1000-1).bit_length #=> 1001
    (-2**1000).bit_length #=> 1000
    (-2**1000+1).bit_length #=> 1000
    (-2**12-1).bit_length #=> 13
    (-2**12).bit_length #=> 12
    (-2**12+1).bit_length #=> 12
    -0x101.bit_length #=> 9
    -0x100.bit_length #=> 8
    -0xff.bit_length #=> 8
    -2.bit_length #=> 1
    -1.bit_length #=> 0
    0.bit_length #=> 0
    1.bit_length #=> 1
    0xff.bit_length #=> 8
    0x100.bit_length #=> 9
    (2**12-1).bit_length #=> 12
    (2**12).bit_length #=> 13
    (2**12+1).bit_length #=> 13
    (2**1000-1).bit_length #=> 1000
    (2**1000).bit_length #=> 1001
    (2**1000+1).bit_length #=> 1001
    

    This method can be used to detect overflow in as follows:

    if n.bit_length < 32
     [n].pack("l") # no overflow
    else
     raise "overflow"
    end
    
     static VALUE
    rb_int_bit_length(VALUE num)
    {
     if (FIXNUM_P(num)) {
     return rb_fix_bit_length(num);
     }
     else if (RB_TYPE_P(num, T_BIGNUM)) {
     return rb_big_bit_length(num);
     }
     return Qnil;
    }
     
    ceil([ndigits]) → integer or float click to toggle source

    Returns the smallest number greater than or equal to int with a precision of ndigits decimal digits (default: 0).

    When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

    Returns self when ndigits is zero or positive.

    1.ceil #=> 1
    1.ceil(2) #=> 1
    18.ceil(-1) #=> 20
    (-18).ceil(-1) #=> -10
    
     static VALUE
    int_ceil(int argc, VALUE* argv, VALUE num)
    {
     int ndigits;
     if (!rb_check_arity(argc, 0, 1)) return num;
     ndigits = NUM2INT(argv[0]);
     if (ndigits >= 0) {
     return num;
     }
     return rb_int_ceil(num, ndigits);
    }
     
    chr([encoding]) → string click to toggle source

    Returns a string containing the character represented by the int's value according to encoding.

    65.chr #=> "A"
    230.chr #=> "\xE6"
    255.chr(Encoding::UTF_8) #=> "\u00FF"
    
     static VALUE
    int_chr(int argc, VALUE *argv, VALUE num)
    {
     char c;
     unsigned int i;
     rb_encoding *enc;
     if (rb_num_to_uint(num, &i) == 0) {
     }
     else if (FIXNUM_P(num)) {
     rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num));
     }
     else {
     rb_raise(rb_eRangeError, "bignum out of char range");
     }
     switch (argc) {
     case 0:
     if (0xff < i) {
     enc = rb_default_internal_encoding();
     if (!enc) {
     rb_raise(rb_eRangeError, "%d out of char range", i);
     }
     goto decode;
     }
     c = (char)i;
     if (i < 0x80) {
     return rb_usascii_str_new(&c, 1);
     }
     else {
     return rb_str_new(&c, 1);
     }
     case 1:
     break;
     default:
     rb_check_arity(argc, 0, 1);
     break;
     }
     enc = rb_to_encoding(argv[0]);
     if (!enc) enc = rb_ascii8bit_encoding();
     decode:
     return rb_enc_uint_chr(i, enc);
    }
     
    coerce(numeric) → array click to toggle source

    Returns an array with both a numeric and a big represented as Bignum objects.

    This is achieved by converting numeric to a Bignum.

    A is raised if the numeric is not a Fixnum or Bignum type.

    (0x3FFFFFFFFFFFFFFF+1).coerce(42) #=> [42, 4611686018427387904]
    
     static VALUE
    rb_int_coerce(VALUE x, VALUE y)
    {
     if (RB_INTEGER_TYPE_P(y)) {
     return rb_assoc_new(y, x);
     }
     else {
     x = rb_Float(x);
     y = rb_Float(y);
     return rb_assoc_new(y, x);
     }
    }
     
    denominator → 1 click to toggle source

    Returns 1.

     static VALUE
    integer_denominator(VALUE self)
    {
     return INT2FIX(1);
    }
     
    digits → array click to toggle source
    digits(base) → array

    Returns the digits of int's place-value representation with radix base (default: 10). The digits are returned as an array with the least significant digit as the first array element.

    base must be greater than or equal to 2.

    12345.digits #=> [5, 4, 3, 2, 1]
    12345.digits(7) #=> [4, 6, 6, 0, 5]
    12345.digits(100) #=> [45, 23, 1]
    -12345.digits(7) #=> Math::DomainError
    
     static VALUE
    rb_int_digits(int argc, VALUE *argv, VALUE num)
    {
     VALUE base_value;
     long base;
     if (rb_num_negative_p(num))
     rb_raise(rb_eMathDomainError, "out of domain");
     if (rb_check_arity(argc, 0, 1)) {
     base_value = rb_to_int(argv[0]);
     if (!RB_INTEGER_TYPE_P(base_value))
     rb_raise(rb_eTypeError, "wrong argument type %s (expected Integer)",
     rb_obj_classname(argv[0]));
     if (RB_TYPE_P(base_value, T_BIGNUM))
     return rb_int_digits_bigbase(num, base_value);
     base = FIX2LONG(base_value);
     if (base < 0)
     rb_raise(rb_eArgError, "negative radix");
     else if (base < 2)
     rb_raise(rb_eArgError, "invalid radix %ld", base);
     }
     else
     base = 10;
     if (FIXNUM_P(num))
     return rb_fix_digits(num, base);
     else if (RB_TYPE_P(num, T_BIGNUM))
     return rb_int_digits_bigbase(num, LONG2FIX(base));
     return Qnil;
    }
     
    div(numeric) → integer click to toggle source

    Performs integer division: returns the integer result of dividing int by numeric.

     VALUE
    rb_int_idiv(VALUE x, VALUE y)
    {
     if (FIXNUM_P(x)) {
     return fix_idiv(x, y);
     }
     else if (RB_TYPE_P(x, T_BIGNUM)) {
     return rb_big_idiv(x, y);
     }
     return num_div(x, y);
    }
     
    divmod(numeric) → array click to toggle source

    See .

     VALUE
    rb_int_divmod(VALUE x, VALUE y)
    {
     if (FIXNUM_P(x)) {
     return fix_divmod(x, y);
     }
     else if (RB_TYPE_P(x, T_BIGNUM)) {
     return rb_big_divmod(x, y);
     }
     return Qnil;
    }
     
    downto(limit) {|i| block } → self click to toggle source
    downto(limit) → an_enumerator

    Iterates the given block, passing in decreasing values from int down to and including limit.

    If no block is given, an is returned instead.

    5.downto(1) { |n| print n, ".. " }
    puts "Liftoff!"
    #=> "5.. 4.. 3.. 2.. 1.. Liftoff!"
    
     static VALUE
    int_downto(VALUE from, VALUE to)
    {
     RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size);
     if (FIXNUM_P(from) && FIXNUM_P(to)) {
     long i, end;
     end = FIX2LONG(to);
     for (i=FIX2LONG(from); i >= end; i--) {
     rb_yield(LONG2FIX(i));
     }
     }
     else {
     VALUE i = from, c;
     while (!(c = rb_funcall(i, '<', 1, to))) {
     rb_yield(i);
     i = rb_funcall(i, '-', 1, INT2FIX(1));
     }
     if (NIL_P(c)) rb_cmperr(i, to);
     }
     return from;
    }
     
    even? → true or false click to toggle source

    Returns true if int is an even number.

     static VALUE
    int_even_p(VALUE num)
    {
     if (FIXNUM_P(num)) {
     if ((num & 2) == 0) {
     return Qtrue;
     }
     }
     else if (RB_TYPE_P(num, T_BIGNUM)) {
     return rb_big_even_p(num);
     }
     else if (rb_funcall(num, '%', 1, INT2FIX(2)) == INT2FIX(0)) {
     return Qtrue;
     }
     return Qfalse;
    }
     
    fdiv(numeric) → float click to toggle source

    Returns the floating point result of dividing int by numeric.

    654321.fdiv(13731) #=> 47.652829364212366
    654321.fdiv(13731.24) #=> 47.65199646936475
    -654321.fdiv(13731) #=> -47.652829364212366
    
     VALUE
    rb_int_fdiv(VALUE x, VALUE y)
    {
     if (RB_INTEGER_TYPE_P(x)) {
     return DBL2NUM(rb_int_fdiv_double(x, y));
     }
     return Qnil;
    }
     
    floor([ndigits]) → integer or float click to toggle source

    Returns the largest number less than or equal to int with a precision of ndigits decimal digits (default: 0).

    When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

    Returns self when ndigits is zero or positive.

    1.floor #=> 1
    1.floor(2) #=> 1
    18.floor(-1) #=> 10
    (-18).floor(-1) #=> -20
    
     static VALUE
    int_floor(int argc, VALUE* argv, VALUE num)
    {
     int ndigits;
     if (!rb_check_arity(argc, 0, 1)) return num;
     ndigits = NUM2INT(argv[0]);
     if (ndigits >= 0) {
     return num;
     }
     return rb_int_floor(num, ndigits);
    }
     
    gcd(other_int) → integer click to toggle source

    Returns the greatest common divisor of the two integers. The result is always positive. 0.gcd(x) and x.gcd(0) return x.abs.

    36.gcd(60) #=> 12
    2.gcd(2) #=> 2
    3.gcd(-7) #=> 1
    ((1<<31)-1).gcd((1<<61)-1) #=> 1
    
     VALUE
    rb_gcd(VALUE self, VALUE other)
    {
     other = nurat_int_value(other);
     return f_gcd(self, other);
    }
     
    gcdlcm(other_int) → array click to toggle source

    Returns an array with the greatest common divisor and the least common multiple of the two integers, [gcd, lcm].

    36.gcdlcm(60) #=> [12, 180]
    2.gcdlcm(2) #=> [2, 2]
    3.gcdlcm(-7) #=> [1, 21]
    ((1<<31)-1).gcdlcm((1<<61)-1) #=> [1, 4951760154835678088235319297]
    
     VALUE
    rb_gcdlcm(VALUE self, VALUE other)
    {
     other = nurat_int_value(other);
     return rb_assoc_new(f_gcd(self, other), f_lcm(self, other));
    }
     
    inspect(*args) click to toggle source
    Alias for:
    integer? → true click to toggle source

    Since int is already an , this always returns true.

     static VALUE
    int_int_p(VALUE num)
    {
     return Qtrue;
    }
     
    lcm(other_int) → integer click to toggle source

    Returns the least common multiple of the two integers. The result is always positive. 0.lcm(x) and x.lcm(0) return zero.

    36.lcm(60) #=> 180
    2.lcm(2) #=> 2
    3.lcm(-7) #=> 21
    ((1<<31)-1).lcm((1<<61)-1) #=> 4951760154835678088235319297
    
     VALUE
    rb_lcm(VALUE self, VALUE other)
    {
     other = nurat_int_value(other);
     return f_lcm(self, other);
    }
     
    magnitude → integer click to toggle source

    Returns the absolute value of int.

    (-12345).abs #=> 12345
    -12345.abs #=> 12345
    12345.abs #=> 12345
    

    is an alias for .

     VALUE
    rb_int_abs(VALUE num)
    {
     if (FIXNUM_P(num)) {
     return fix_abs(num);
     }
     else if (RB_TYPE_P(num, T_BIGNUM)) {
     return rb_big_abs(num);
     }
     return Qnil;
    }
     
    modulo(other) → real click to toggle source

    Returns int modulo other.

    See for more information.

     VALUE
    rb_int_modulo(VALUE x, VALUE y)
    {
     if (FIXNUM_P(x)) {
     return fix_mod(x, y);
     }
     else if (RB_TYPE_P(x, T_BIGNUM)) {
     return rb_big_modulo(x, y);
     }
     return num_modulo(x, y);
    }
     
    next → integer click to toggle source

    Returns the successor of int, i.e. the equal to int+1.

    1.next #=> 2
    (-1).next #=> 0
    1.succ #=> 2
    (-1).succ #=> 0
    
     VALUE
    rb_int_succ(VALUE num)
    {
     if (FIXNUM_P(num)) {
     long i = FIX2LONG(num) + 1;
     return LONG2NUM(i);
     }
     if (RB_TYPE_P(num, T_BIGNUM)) {
     return rb_big_plus(num, INT2FIX(1));
     }
     return num_funcall1(num, '+', INT2FIX(1));
    }
     
    nobits?(mask) → true or false click to toggle source

    Returns true if no bits of int & mask are 1.

     static VALUE
    int_nobits_p(VALUE num, VALUE mask)
    {
     mask = rb_to_int(mask);
     return num_zero_p(rb_int_and(num, mask));
    }
     
    numerator → self click to toggle source

    Returns self.

     static VALUE
    integer_numerator(VALUE self)
    {
     return self;
    }
     
    odd? → true or false click to toggle source

    Returns true if int is an odd number.

     VALUE
    rb_int_odd_p(VALUE num)
    {
     if (FIXNUM_P(num)) {
     if (num & 2) {
     return Qtrue;
     }
     }
     else if (RB_TYPE_P(num, T_BIGNUM)) {
     return rb_big_odd_p(num);
     }
     else if (rb_funcall(num, '%', 1, INT2FIX(2)) != INT2FIX(0)) {
     return Qtrue;
     }
     return Qfalse;
    }
     
    ord → self click to toggle source

    Returns the int itself.

    97.ord #=> 97
    

    This method is intended for compatibility to character literals in Ruby 1.9.

    For example, ?a.ord returns 97 both in 1.8 and 1.9.

     static VALUE
    int_ord(VALUE num)
    {
     return num;
    }
     
    pow(numeric) → numeric click to toggle source
    pow(integer, integer) → integer

    Returns (modular) exponentiation as:

    a.pow(b) #=> same as a**b
    a.pow(b, m) #=> same as (a**b) % m, but avoids huge temporary values
    
     VALUE
    rb_int_powm(int const argc, VALUE * const argv, VALUE const num)
    {
     rb_check_arity(argc, 1, 2);
     if (argc == 1) {
     return rb_int_pow(num, argv[0]);
     }
     else {
     VALUE const a = num;
     VALUE const b = argv[0];
     VALUE m = argv[1];
     int nega_flg = 0;
     if ( ! RB_INTEGER_TYPE_P(b)) {
     rb_raise(rb_eTypeError, "Integer#pow() 2nd argument not allowed unless a 1st argument is integer");
     }
     if (rb_int_negative_p(b)) {
     rb_raise(rb_eRangeError, "Integer#pow() 1st argument cannot be negative when 2nd argument specified");
     }
     if (!RB_INTEGER_TYPE_P(m)) {
     rb_raise(rb_eTypeError, "Integer#pow() 2nd argument not allowed unless all arguments are integers");
     }
     if (rb_int_negative_p(m)) {
     m = rb_int_uminus(m);
     nega_flg = 1;
     }
     if (FIXNUM_P(m)) {
     long const half_val = (long)HALF_LONG_MSB;
     long const mm = FIX2LONG(m);
     if (!mm) rb_num_zerodiv();
     if (mm <= half_val) {
     return int_pow_tmp1(rb_int_modulo(a, m), b, mm, nega_flg);
     }
     else {
     return int_pow_tmp2(rb_int_modulo(a, m), b, mm, nega_flg);
     }
     }
     else {
     if (rb_bigzero_p(m)) rb_num_zerodiv();
     return int_pow_tmp3(rb_int_modulo(a, m), b, m, nega_flg);
     }
     }
     UNREACHABLE_RETURN(Qnil);
    }
     
    pred → integer click to toggle source

    Returns the predecessor of int, i.e. the equal to int-1.

    1.pred #=> 0
    (-1).pred #=> -2
    
     VALUE
    rb_int_pred(VALUE num)
    {
     if (FIXNUM_P(num)) {
     long i = FIX2LONG(num) - 1;
     return LONG2NUM(i);
     }
     if (RB_TYPE_P(num, T_BIGNUM)) {
     return rb_big_minus(num, INT2FIX(1));
     }
     return num_funcall1(num, '-', INT2FIX(1));
    }
     
    rationalize([eps]) → rational click to toggle source

    Returns the value as a rational. The optional argument eps is always ignored.

     static VALUE
    integer_rationalize(int argc, VALUE *argv, VALUE self)
    {
     rb_check_arity(argc, 0, 1);
     return integer_to_r(self);
    }
     
    remainder(numeric) → real click to toggle source

    Returns the remainder after dividing int by numeric.

    x.remainder(y) means x-y*(x/y).truncate.

    5.remainder(3) #=> 2
    -5.remainder(3) #=> -2
    5.remainder(-3) #=> 2
    -5.remainder(-3) #=> -2
    5.remainder(1.5) #=> 0.5
    

    See .

     static VALUE
    int_remainder(VALUE x, VALUE y)
    {
     if (FIXNUM_P(x)) {
     return num_remainder(x, y);
     }
     else if (RB_TYPE_P(x, T_BIGNUM)) {
     return rb_big_remainder(x, y);
     }
     return Qnil;
    }
     
    round([ndigits] [, half: mode]) → integer or float click to toggle source

    Returns int rounded to the nearest value with a precision of ndigits decimal digits (default: 0).

    When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

    Returns self when ndigits is zero or positive.

    1.round #=> 1
    1.round(2) #=> 1
    15.round(-1) #=> 20
    (-15).round(-1) #=> -20
    

    The optional half keyword argument is available similar to .

    25.round(-1, half: :up) #=> 30
    25.round(-1, half: :down) #=> 20
    25.round(-1, half: :even) #=> 20
    35.round(-1, half: :up) #=> 40
    35.round(-1, half: :down) #=> 30
    35.round(-1, half: :even) #=> 40
    (-25).round(-1, half: :up) #=> -30
    (-25).round(-1, half: :down) #=> -20
    (-25).round(-1, half: :even) #=> -20
    
     static VALUE
    int_round(int argc, VALUE* argv, VALUE num)
    {
     int ndigits;
     int mode;
     VALUE nd, opt;
     if (!rb_scan_args(argc, argv, "01:", &nd, &opt)) return num;
     ndigits = NUM2INT(nd);
     mode = rb_num_get_rounding_option(opt);
     if (ndigits >= 0) {
     return num;
     }
     return rb_int_round(num, ndigits, mode);
    }
     
    size → int click to toggle source

    Returns the number of bytes in the machine representation of int (machine dependent).

    1.size #=> 8
    -1.size #=> 8
    2147483647.size #=> 8
    (256**10 - 1).size #=> 10
    (256**20 - 1).size #=> 20
    (256**40 - 1).size #=> 40
    
     static VALUE
    int_size(VALUE num)
    {
     if (FIXNUM_P(num)) {
     return fix_size(num);
     }
     else if (RB_TYPE_P(num, T_BIGNUM)) {
     return rb_big_size_m(num);
     }
     return Qnil;
    }
     
    succ → integer click to toggle source

    Returns the successor of int, i.e. the equal to int+1.

    1.next #=> 2
    (-1).next #=> 0
    1.succ #=> 2
    (-1).succ #=> 0
    
     VALUE
    rb_int_succ(VALUE num)
    {
     if (FIXNUM_P(num)) {
     long i = FIX2LONG(num) + 1;
     return LONG2NUM(i);
     }
     if (RB_TYPE_P(num, T_BIGNUM)) {
     return rb_big_plus(num, INT2FIX(1));
     }
     return num_funcall1(num, '+', INT2FIX(1));
    }
     
    times {|i| block } → self click to toggle source
    times → an_enumerator

    Iterates the given block int times, passing in values from zero to int - 1.

    If no block is given, an is returned instead.

    5.times {|i| print i, " " } #=> 0 1 2 3 4
    
     static VALUE
    int_dotimes(VALUE num)
    {
     RETURN_SIZED_ENUMERATOR(num, 0, 0, int_dotimes_size);
     if (FIXNUM_P(num)) {
     long i, end;
     end = FIX2LONG(num);
     for (i=0; i<end; i++) {
     rb_yield_1(LONG2FIX(i));
     }
     }
     else {
     VALUE i = INT2FIX(0);
     for (;;) {
     if (!RTEST(rb_funcall(i, '<', 1, num))) break;
     rb_yield(i);
     i = rb_funcall(i, '+', 1, INT2FIX(1));
     }
     }
     return num;
    }
     
    to_f → float click to toggle source

    Converts int to a . If int doesn't fit in a , the result is infinity.

     static VALUE
    int_to_f(VALUE num)
    {
     double val;
     if (FIXNUM_P(num)) {
     val = (double)FIX2LONG(num);
     }
     else if (RB_TYPE_P(num, T_BIGNUM)) {
     val = rb_big2dbl(num);
     }
     else {
     rb_raise(rb_eNotImpError, "Unknown subclass for to_f: %s", rb_obj_classname(num));
     }
     return DBL2NUM(val);
    }
     
    to_i → integer click to toggle source
    to_int → integer

    Since int is already an , returns self.

    is an alias for .

     static VALUE
    int_to_i(VALUE num)
    {
     return num;
    }
     
    to_int → integer click to toggle source

    Since int is already an , returns self.

    is an alias for .

     static VALUE
    int_to_i(VALUE num)
    {
     return num;
    }
     
    to_r → rational click to toggle source

    Returns the value as a rational.

    1.to_r #=> (1/1)
    (1<<64).to_r #=> (18446744073709551616/1)
    
     static VALUE
    integer_to_r(VALUE self)
    {
     return rb_rational_new1(self);
    }
     
    to_s(base=10) → string click to toggle source

    Returns a string containing the place-value representation of int with radix base (between 2 and 36).

    12345.to_s #=> "12345"
    12345.to_s(2) #=> "11000000111001"
    12345.to_s(8) #=> "30071"
    12345.to_s(10) #=> "12345"
    12345.to_s(16) #=> "3039"
    12345.to_s(36) #=> "9ix"
    78546939656932.to_s(36) #=> "rubyrules"
    
     static VALUE
    int_to_s(int argc, VALUE *argv, VALUE x)
    {
     int base;
     if (rb_check_arity(argc, 0, 1))
     base = NUM2INT(argv[0]);
     else
     base = 10;
     return rb_int2str(x, base);
    }
     
    Also aliased as:
    truncate([ndigits]) → integer or float click to toggle source

    Returns int truncated (toward zero) to a precision of ndigits decimal digits (default: 0).

    When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

    Returns self when ndigits is zero or positive.

    1.truncate #=> 1
    1.truncate(2) #=> 1
    18.truncate(-1) #=> 10
    (-18).truncate(-1) #=> -10
    
     static VALUE
    int_truncate(int argc, VALUE* argv, VALUE num)
    {
     int ndigits;
     if (!rb_check_arity(argc, 0, 1)) return num;
     ndigits = NUM2INT(argv[0]);
     if (ndigits >= 0) {
     return num;
     }
     return rb_int_truncate(num, ndigits);
    }
     
    upto(limit) {|i| block } → self click to toggle source
    upto(limit) → an_enumerator

    Iterates the given block, passing in integer values from int up to and including limit.

    If no block is given, an is returned instead.

    5.upto(10) {|i| print i, " " } #=> 5 6 7 8 9 10
    
     static VALUE
    int_upto(VALUE from, VALUE to)
    {
     RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size);
     if (FIXNUM_P(from) && FIXNUM_P(to)) {
     long i, end;
     end = FIX2LONG(to);
     for (i = FIX2LONG(from); i <= end; i++) {
     rb_yield(LONG2FIX(i));
     }
     }
     else {
     VALUE i = from, c;
     while (!(c = rb_funcall(i, '>', 1, to))) {
     rb_yield(i);
     i = rb_funcall(i, '+', 1, INT2FIX(1));
     }
     if (NIL_P(c)) rb_cmperr(i, to);
     }
     return from;
    }
     
    int | other_int → integer click to toggle source

    Bitwise OR.

     static VALUE
    int_or(VALUE x, VALUE y)
    {
     if (FIXNUM_P(x)) {
     return fix_or(x, y);
     }
     else if (RB_TYPE_P(x, T_BIGNUM)) {
     return rb_big_or(x, y);
     }
     return Qnil;
    }
     
    ~int → integer click to toggle source

    One's complement: returns a number where each bit is flipped.

    Inverts the bits in an . As integers are conceptually of infinite length, the result acts as if it had an infinite number of one bits to the left. In hex representations, this is displayed as two periods to the left of the digits.

    sprintf("%X", ~0x1122334455) #=> "..FEEDDCCBBAA"
    
     static VALUE
    int_comp(VALUE num)
    {
     if (FIXNUM_P(num)) {
     return fix_comp(num);
     }
     else if (RB_TYPE_P(num, T_BIGNUM)) {
     return rb_big_comp(num);
     }
     return Qnil;
    }
     

    This page was generated for Ruby

    is a service of and , an erratic source of art, music, and technology.

    Generated with Ruby-doc Rdoc Generator 0.44.0.