In Files

    • complex.c
    • numeric.c
    • rational.c

    Parent

    Class/Module Index [+]

    Quicksearch
    No matching classes.

    Float

    objects represent inexact real numbers using the native architecture's double-precision floating point representation.

    Floating point has a different arithmetic and is an inexact number. So you should know its esoteric system. See following:

    Constants

    The minimum number of significant decimal digits in a double-precision floating point.

    Usually defaults to 15.

    The difference between 1 and the smallest double-precision floating point number greater than 1.

    Usually defaults to 2.2204460492503131e-16.

    An expression representing positive infinity.

    The number of base digits for the double data type.

    Usually defaults to 53.

    The largest possible integer in a double-precision floating point number.

    Usually defaults to 1.7976931348623157e+308.

    The largest positive exponent in a double-precision floating point where 10 raised to this power minus 1.

    Usually defaults to 308.

    The largest possible exponent value in a double-precision floating point.

    Usually defaults to 1024.

    The smallest positive normalized number in a double-precision floating point.

    Usually defaults to 2.2250738585072014e-308.

    If the platform supports denormalized numbers, there are numbers between zero and . 0.0.next_float returns the smallest positive floating point number including denormalized numbers.

    The smallest negative exponent in a double-precision floating point where 10 raised to this power minus 1.

    Usually defaults to -307.

    The smallest possible exponent value in a double-precision floating point.

    Usually defaults to -1021.

    An expression representing a value which is "not a number".

    The base of the floating point, or number of unique digits used to represent the number.

    Usually defaults to 2 on most systems, which would represent a base-10 decimal.

    Represents the rounding mode for floating point addition.

    Usually defaults to 1, rounding to the nearest number.

    Other modes include:

    -1

    Indeterminable

    0

    Rounding towards zero

    1

    Rounding to the nearest number

    2

    Rounding towards positive infinity

    3

    Rounding towards negative infinity

    Public Instance Methods

    float % other → float click to toggle source

    Returns the modulo after division of float by other.

    6543.21.modulo(137) #=> 104.21000000000004
    6543.21.modulo(137.24) #=> 92.92999999999961
    
     static VALUE
    flo_mod(VALUE x, VALUE y)
    {
     double fy;
     if (RB_TYPE_P(y, T_FIXNUM)) {
     fy = (double)FIX2LONG(y);
     }
     else if (RB_TYPE_P(y, T_BIGNUM)) {
     fy = rb_big2dbl(y);
     }
     else if (RB_TYPE_P(y, T_FLOAT)) {
     fy = RFLOAT_VALUE(y);
     }
     else {
     return rb_num_coerce_bin(x, y, '%');
     }
     return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
    }
     
    float * other → float click to toggle source

    Returns a new which is the product of float and other.

     VALUE
    rb_float_mul(VALUE x, VALUE y)
    {
     if (RB_TYPE_P(y, T_FIXNUM)) {
     return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
     }
     else if (RB_TYPE_P(y, T_BIGNUM)) {
     return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
     }
     else if (RB_TYPE_P(y, T_FLOAT)) {
     return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
     }
     else {
     return rb_num_coerce_bin(x, y, '*');
     }
    }
     
    float ** other → float click to toggle source

    Raises float to the power of other.

    2.0**3 #=> 8.0
    
     VALUE
    rb_float_pow(VALUE x, VALUE y)
    {
     double dx, dy;
     if (RB_TYPE_P(y, T_FIXNUM)) {
     dx = RFLOAT_VALUE(x);
     dy = (double)FIX2LONG(y);
     }
     else if (RB_TYPE_P(y, T_BIGNUM)) {
     dx = RFLOAT_VALUE(x);
     dy = rb_big2dbl(y);
     }
     else if (RB_TYPE_P(y, T_FLOAT)) {
     dx = RFLOAT_VALUE(x);
     dy = RFLOAT_VALUE(y);
     if (dx < 0 && dy != round(dy))
     return rb_dbl_complex_new_polar_pi(pow(-dx, dy), dy);
     }
     else {
     return rb_num_coerce_bin(x, y, idPow);
     }
     return DBL2NUM(pow(dx, dy));
    }
     
    float + other → float click to toggle source

    Returns a new which is the sum of float and other.

     VALUE
    rb_float_plus(VALUE x, VALUE y)
    {
     if (RB_TYPE_P(y, T_FIXNUM)) {
     return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
     }
     else if (RB_TYPE_P(y, T_BIGNUM)) {
     return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
     }
     else if (RB_TYPE_P(y, T_FLOAT)) {
     return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
     }
     else {
     return rb_num_coerce_bin(x, y, '+');
     }
    }
     
    float - other → float click to toggle source

    Returns a new which is the difference of float and other.

     static VALUE
    flo_minus(VALUE x, VALUE y)
    {
     if (RB_TYPE_P(y, T_FIXNUM)) {
     return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
     }
     else if (RB_TYPE_P(y, T_BIGNUM)) {
     return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
     }
     else if (RB_TYPE_P(y, T_FLOAT)) {
     return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
     }
     else {
     return rb_num_coerce_bin(x, y, '-');
     }
    }
     
    -float → float click to toggle source

    Returns float, negated.

     VALUE
    rb_float_uminus(VALUE flt)
    {
     return DBL2NUM(-RFLOAT_VALUE(flt));
    }
     
    float / other → float click to toggle source

    Returns a new which is the result of dividing float by other.

     static VALUE
    flo_div(VALUE x, VALUE y)
    {
     double num = RFLOAT_VALUE(x);
     double den;
     double ret;
     if (RB_TYPE_P(y, T_FIXNUM)) {
     den = FIX2LONG(y);
     }
     else if (RB_TYPE_P(y, T_BIGNUM)) {
     den = rb_big2dbl(y);
     }
     else if (RB_TYPE_P(y, T_FLOAT)) {
     den = RFLOAT_VALUE(y);
     }
     else {
     return rb_num_coerce_bin(x, y, '/');
     }
     ret = double_div_double(num, den);
     return DBL2NUM(ret);
    }
     
    float < real → true or false click to toggle source

    Returns true if float is less than real.

    The result of NaN < NaN is undefined, so an implementation-dependent value is returned.

     static VALUE
    flo_lt(VALUE x, VALUE y)
    {
     double a, b;
     a = RFLOAT_VALUE(x);
     if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
     VALUE rel = rb_integer_float_cmp(y, x);
     if (FIXNUM_P(rel))
     return -FIX2INT(rel) < 0 ? Qtrue : Qfalse;
     return Qfalse;
     }
     else if (RB_TYPE_P(y, T_FLOAT)) {
     b = RFLOAT_VALUE(y);
    #if defined(_MSC_VER) && _MSC_VER < 1300
     if (isnan(b)) return Qfalse;
    #endif
     }
     else {
     return rb_num_coerce_relop(x, y, '<');
     }
    #if defined(_MSC_VER) && _MSC_VER < 1300
     if (isnan(a)) return Qfalse;
    #endif
     return (a < b)?Qtrue:Qfalse;
    }
     
    float <= real → true or false click to toggle source

    Returns true if float is less than or equal to real.

    The result of NaN <= NaN is undefined, so an implementation-dependent value is returned.

     static VALUE
    flo_le(VALUE x, VALUE y)
    {
     double a, b;
     a = RFLOAT_VALUE(x);
     if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
     VALUE rel = rb_integer_float_cmp(y, x);
     if (FIXNUM_P(rel))
     return -FIX2INT(rel) <= 0 ? Qtrue : Qfalse;
     return Qfalse;
     }
     else if (RB_TYPE_P(y, T_FLOAT)) {
     b = RFLOAT_VALUE(y);
    #if defined(_MSC_VER) && _MSC_VER < 1300
     if (isnan(b)) return Qfalse;
    #endif
     }
     else {
     return rb_num_coerce_relop(x, y, idLE);
     }
    #if defined(_MSC_VER) && _MSC_VER < 1300
     if (isnan(a)) return Qfalse;
    #endif
     return (a <= b)?Qtrue:Qfalse;
    }
     
    float <=> real → -1, 0, +1, or nil click to toggle source

    Returns -1, 0, or +1 depending on whether float is less than, equal to, or greater than real. This is the basis for the tests in the module.

    The result of NaN <=> NaN is undefined, so an implementation-dependent value is returned.

    nil is returned if the two values are incomparable.

     static VALUE
    flo_cmp(VALUE x, VALUE y)
    {
     double a, b;
     VALUE i;
     a = RFLOAT_VALUE(x);
     if (isnan(a)) return Qnil;
     if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
     VALUE rel = rb_integer_float_cmp(y, x);
     if (FIXNUM_P(rel))
     return INT2FIX(-FIX2INT(rel));
     return rel;
     }
     else if (RB_TYPE_P(y, T_FLOAT)) {
     b = RFLOAT_VALUE(y);
     }
     else {
     if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) {
     if (RTEST(i)) {
     int j = rb_cmpint(i, x, y);
     j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1);
     return INT2FIX(j);
     }
     if (a > 0.0) return INT2FIX(1);
     return INT2FIX(-1);
     }
     return rb_num_coerce_cmp(x, y, id_cmp);
     }
     return rb_dbl_cmp(a, b);
    }
     
    float == obj → true or false click to toggle source

    Returns true only if obj has the same value as float. Contrast this with , which requires obj to be a .

    1.0 == 1 #=> true
    

    The result of NaN == NaN is undefined, so an implementation-dependent value is returned.

     MJIT_FUNC_EXPORTED VALUE
    rb_float_equal(VALUE x, VALUE y)
    {
     volatile double a, b;
     if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
     return rb_integer_float_eq(y, x);
     }
     else if (RB_TYPE_P(y, T_FLOAT)) {
     b = RFLOAT_VALUE(y);
    #if defined(_MSC_VER) && _MSC_VER < 1300
     if (isnan(b)) return Qfalse;
    #endif
     }
     else {
     return num_equal(x, y);
     }
     a = RFLOAT_VALUE(x);
    #if defined(_MSC_VER) && _MSC_VER < 1300
     if (isnan(a)) return Qfalse;
    #endif
     return (a == b)?Qtrue:Qfalse;
    }
     
    float == obj → true or false click to toggle source

    Returns true only if obj has the same value as float. Contrast this with , which requires obj to be a .

    1.0 == 1 #=> true
    

    The result of NaN == NaN is undefined, so an implementation-dependent value is returned.

     MJIT_FUNC_EXPORTED VALUE
    rb_float_equal(VALUE x, VALUE y)
    {
     volatile double a, b;
     if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
     return rb_integer_float_eq(y, x);
     }
     else if (RB_TYPE_P(y, T_FLOAT)) {
     b = RFLOAT_VALUE(y);
    #if defined(_MSC_VER) && _MSC_VER < 1300
     if (isnan(b)) return Qfalse;
    #endif
     }
     else {
     return num_equal(x, y);
     }
     a = RFLOAT_VALUE(x);
    #if defined(_MSC_VER) && _MSC_VER < 1300
     if (isnan(a)) return Qfalse;
    #endif
     return (a == b)?Qtrue:Qfalse;
    }
     
    float > real → true or false click to toggle source

    Returns true if float is greater than real.

    The result of NaN > NaN is undefined, so an implementation-dependent value is returned.

     VALUE
    rb_float_gt(VALUE x, VALUE y)
    {
     double a, b;
     a = RFLOAT_VALUE(x);
     if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
     VALUE rel = rb_integer_float_cmp(y, x);
     if (FIXNUM_P(rel))
     return -FIX2INT(rel) > 0 ? Qtrue : Qfalse;
     return Qfalse;
     }
     else if (RB_TYPE_P(y, T_FLOAT)) {
     b = RFLOAT_VALUE(y);
    #if defined(_MSC_VER) && _MSC_VER < 1300
     if (isnan(b)) return Qfalse;
    #endif
     }
     else {
     return rb_num_coerce_relop(x, y, '>');
     }
    #if defined(_MSC_VER) && _MSC_VER < 1300
     if (isnan(a)) return Qfalse;
    #endif
     return (a > b)?Qtrue:Qfalse;
    }
     
    float >= real → true or false click to toggle source

    Returns true if float is greater than or equal to real.

    The result of NaN >= NaN is undefined, so an implementation-dependent value is returned.

     static VALUE
    flo_ge(VALUE x, VALUE y)
    {
     double a, b;
     a = RFLOAT_VALUE(x);
     if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
     VALUE rel = rb_integer_float_cmp(y, x);
     if (FIXNUM_P(rel))
     return -FIX2INT(rel) >= 0 ? Qtrue : Qfalse;
     return Qfalse;
     }
     else if (RB_TYPE_P(y, T_FLOAT)) {
     b = RFLOAT_VALUE(y);
    #if defined(_MSC_VER) && _MSC_VER < 1300
     if (isnan(b)) return Qfalse;
    #endif
     }
     else {
     return rb_num_coerce_relop(x, y, idGE);
     }
    #if defined(_MSC_VER) && _MSC_VER < 1300
     if (isnan(a)) return Qfalse;
    #endif
     return (a >= b)?Qtrue:Qfalse;
    }
     
    abs → float click to toggle source

    Returns the absolute value of float.

    (-34.56).abs #=> 34.56
    -34.56.abs #=> 34.56
    34.56.abs #=> 34.56
    

    is an alias for .

     VALUE
    rb_float_abs(VALUE flt)
    {
     double val = fabs(RFLOAT_VALUE(flt));
     return DBL2NUM(val);
    }
     
    angle → 0 or float click to toggle source

    Returns 0 if the value is positive, pi otherwise.

     static VALUE
    float_arg(VALUE self)
    {
     if (isnan(RFLOAT_VALUE(self)))
     return self;
     if (f_tpositive_p(self))
     return INT2FIX(0);
     return rb_const_get(rb_mMath, id_PI);
    }
     
    arg → 0 or float click to toggle source

    Returns 0 if the value is positive, pi otherwise.

     static VALUE
    float_arg(VALUE self)
    {
     if (isnan(RFLOAT_VALUE(self)))
     return self;
     if (f_tpositive_p(self))
     return INT2FIX(0);
     return rb_const_get(rb_mMath, id_PI);
    }
     
    ceil([ndigits]) → integer or float click to toggle source

    Returns the smallest number greater than or equal to float with a precision of ndigits decimal digits (default: 0).

    When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

    Returns a floating point number when ndigits is positive, otherwise returns an integer.

    1.2.ceil #=> 2
    2.0.ceil #=> 2
    (-1.2).ceil #=> -1
    (-2.0).ceil #=> -2
    1.234567.ceil(2) #=> 1.24
    1.234567.ceil(3) #=> 1.235
    1.234567.ceil(4) #=> 1.2346
    1.234567.ceil(5) #=> 1.23457
    34567.89.ceil(-5) #=> 100000
    34567.89.ceil(-4) #=> 40000
    34567.89.ceil(-3) #=> 35000
    34567.89.ceil(-2) #=> 34600
    34567.89.ceil(-1) #=> 34570
    34567.89.ceil(0) #=> 34568
    34567.89.ceil(1) #=> 34567.9
    34567.89.ceil(2) #=> 34567.89
    34567.89.ceil(3) #=> 34567.89
    

    Note that the limited precision of floating point arithmetic might lead to surprising results:

    (2.1 / 0.7).ceil #=> 4 (!)
    
     static VALUE
    flo_ceil(int argc, VALUE *argv, VALUE num)
    {
     double number, f;
     int ndigits = 0;
     if (rb_check_arity(argc, 0, 1)) {
     ndigits = NUM2INT(argv[0]);
     }
     number = RFLOAT_VALUE(num);
     if (number == 0.0) {
     return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
     }
     if (ndigits > 0) {
     int binexp;
     frexp(number, &binexp);
     if (float_round_overflow(ndigits, binexp)) return num;
     if (number < 0.0 && float_round_underflow(ndigits, binexp))
     return DBL2NUM(0.0);
     f = pow(10, ndigits);
     f = ceil(number * f) / f;
     return DBL2NUM(f);
     }
     else {
     num = dbl2ival(ceil(number));
     if (ndigits < 0) num = rb_int_ceil(num, ndigits);
     return num;
     }
    }
     
    coerce(numeric) → array click to toggle source

    Returns an array with both numeric and float represented as objects.

    This is achieved by converting numeric to a .

    1.2.coerce(3) #=> [3.0, 1.2]
    2.5.coerce(1.1) #=> [1.1, 2.5]
    
     static VALUE
    flo_coerce(VALUE x, VALUE y)
    {
     return rb_assoc_new(rb_Float(y), x);
    }
     
    denominator → integer click to toggle source

    Returns the denominator (always positive). The result is machine dependent.

    See also .

     static VALUE
    float_denominator(VALUE self)
    {
     double d = RFLOAT_VALUE(self);
     VALUE r;
     if (isinf(d) || isnan(d))
     return INT2FIX(1);
     r = float_to_r(self);
     if (canonicalization && k_integer_p(r)) {
     return ONE;
     }
     return nurat_denominator(r);
    }
     
    divmod(numeric) → array click to toggle source

    See .

    42.0.divmod(6) #=> [7, 0.0]
    42.0.divmod(5) #=> [8, 2.0]
    
     static VALUE
    flo_divmod(VALUE x, VALUE y)
    {
     double fy, div, mod;
     volatile VALUE a, b;
     if (RB_TYPE_P(y, T_FIXNUM)) {
     fy = (double)FIX2LONG(y);
     }
     else if (RB_TYPE_P(y, T_BIGNUM)) {
     fy = rb_big2dbl(y);
     }
     else if (RB_TYPE_P(y, T_FLOAT)) {
     fy = RFLOAT_VALUE(y);
     }
     else {
     return rb_num_coerce_bin(x, y, id_divmod);
     }
     flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
     a = dbl2ival(div);
     b = DBL2NUM(mod);
     return rb_assoc_new(a, b);
    }
     
    eql?(obj) → true or false click to toggle source

    Returns true only if obj is a with the same value as float. Contrast this with Float#==, which performs type conversions.

    1.0.eql?(1) #=> false
    

    The result of NaN.eql?(NaN) is undefined, so an implementation-dependent value is returned.

     MJIT_FUNC_EXPORTED VALUE
    rb_float_eql(VALUE x, VALUE y)
    {
     if (RB_TYPE_P(y, T_FLOAT)) {
     double a = RFLOAT_VALUE(x);
     double b = RFLOAT_VALUE(y);
    #if defined(_MSC_VER) && _MSC_VER < 1300
     if (isnan(a) || isnan(b)) return Qfalse;
    #endif
     if (a == b)
     return Qtrue;
     }
     return Qfalse;
    }
     
    fdiv(numeric) → float click to toggle source

    Returns float / numeric, same as Float#/.

     static VALUE
    flo_quo(VALUE x, VALUE y)
    {
     return num_funcall1(x, '/', y);
    }
     
    finite? → true or false click to toggle source

    Returns true if float is a valid IEEE floating point number, i.e. it is not infinite and is false.

     VALUE
    rb_flo_is_finite_p(VALUE num)
    {
     double value = RFLOAT_VALUE(num);
    #ifdef HAVE_ISFINITE
     if (!isfinite(value))
     return Qfalse;
    #else
     if (isinf(value) || isnan(value))
     return Qfalse;
    #endif
     return Qtrue;
    }
     
    floor([ndigits]) → integer or float click to toggle source

    Returns the largest number less than or equal to float with a precision of ndigits decimal digits (default: 0).

    When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

    Returns a floating point number when ndigits is positive, otherwise returns an integer.

    1.2.floor #=> 1
    2.0.floor #=> 2
    (-1.2).floor #=> -2
    (-2.0).floor #=> -2
    1.234567.floor(2) #=> 1.23
    1.234567.floor(3) #=> 1.234
    1.234567.floor(4) #=> 1.2345
    1.234567.floor(5) #=> 1.23456
    34567.89.floor(-5) #=> 0
    34567.89.floor(-4) #=> 30000
    34567.89.floor(-3) #=> 34000
    34567.89.floor(-2) #=> 34500
    34567.89.floor(-1) #=> 34560
    34567.89.floor(0) #=> 34567
    34567.89.floor(1) #=> 34567.8
    34567.89.floor(2) #=> 34567.89
    34567.89.floor(3) #=> 34567.89
    

    Note that the limited precision of floating point arithmetic might lead to surprising results:

    (0.3 / 0.1).floor #=> 2 (!)
    
     static VALUE
    flo_floor(int argc, VALUE *argv, VALUE num)
    {
     double number, f;
     int ndigits = 0;
     if (rb_check_arity(argc, 0, 1)) {
     ndigits = NUM2INT(argv[0]);
     }
     number = RFLOAT_VALUE(num);
     if (number == 0.0) {
     return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
     }
     if (ndigits > 0) {
     int binexp;
     frexp(number, &binexp);
     if (float_round_overflow(ndigits, binexp)) return num;
     if (number > 0.0 && float_round_underflow(ndigits, binexp))
     return DBL2NUM(0.0);
     f = pow(10, ndigits);
     f = floor(number * f) / f;
     return DBL2NUM(f);
     }
     else {
     num = dbl2ival(floor(number));
     if (ndigits < 0) num = rb_int_floor(num, ndigits);
     return num;
     }
    }
     
    hash → integer click to toggle source

    Returns a hash code for this float.

    See also Object#hash.

     static VALUE
    flo_hash(VALUE num)
    {
     return rb_dbl_hash(RFLOAT_VALUE(num));
    }
     
    infinite? → -1, 1, or nil click to toggle source

    Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or +Infinity.

    (0.0).infinite? #=> nil
    (-1.0/0.0).infinite? #=> -1
    (+1.0/0.0).infinite? #=> 1
    
     VALUE
    rb_flo_is_infinite_p(VALUE num)
    {
     double value = RFLOAT_VALUE(num);
     if (isinf(value)) {
     return INT2FIX( value < 0 ? -1 : 1 );
     }
     return Qnil;
    }
     
    inspect() click to toggle source
    Alias for:
    magnitude → float click to toggle source

    Returns the absolute value of float.

    (-34.56).abs #=> 34.56
    -34.56.abs #=> 34.56
    34.56.abs #=> 34.56
    

    is an alias for .

     VALUE
    rb_float_abs(VALUE flt)
    {
     double val = fabs(RFLOAT_VALUE(flt));
     return DBL2NUM(val);
    }
     
    modulo(other) → float click to toggle source

    Returns the modulo after division of float by other.

    6543.21.modulo(137) #=> 104.21000000000004
    6543.21.modulo(137.24) #=> 92.92999999999961
    
     static VALUE
    flo_mod(VALUE x, VALUE y)
    {
     double fy;
     if (RB_TYPE_P(y, T_FIXNUM)) {
     fy = (double)FIX2LONG(y);
     }
     else if (RB_TYPE_P(y, T_BIGNUM)) {
     fy = rb_big2dbl(y);
     }
     else if (RB_TYPE_P(y, T_FLOAT)) {
     fy = RFLOAT_VALUE(y);
     }
     else {
     return rb_num_coerce_bin(x, y, '%');
     }
     return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
    }
     
    nan? → true or false click to toggle source

    Returns true if float is an invalid IEEE floating point number.

    a = -1.0 #=> -1.0
    a.nan? #=> false
    a = 0.0/0.0 #=> NaN
    a.nan? #=> true
    
     static VALUE
    flo_is_nan_p(VALUE num)
    {
     double value = RFLOAT_VALUE(num);
     return isnan(value) ? Qtrue : Qfalse;
    }
     
    negative? → true or false click to toggle source

    Returns true if float is less than 0.

     static VALUE
    flo_negative_p(VALUE num)
    {
     double f = RFLOAT_VALUE(num);
     return f < 0.0 ? Qtrue : Qfalse;
    }
     
    next_float → float click to toggle source

    Returns the next representable floating point number.

    Float::MAX.next_float and Float::INFINITY.next_float is .

    Float::NAN.next_float is .

    For example:

    0.01.next_float #=> 0.010000000000000002
    1.0.next_float #=> 1.0000000000000002
    100.0.next_float #=> 100.00000000000001
    0.01.next_float - 0.01 #=> 1.734723475976807e-18
    1.0.next_float - 1.0 #=> 2.220446049250313e-16
    100.0.next_float - 100.0 #=> 1.4210854715202004e-14
    f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.next_float }
    #=> 0x1.47ae147ae147bp-7 0.01
    # 0x1.47ae147ae147cp-7 0.010000000000000002
    # 0x1.47ae147ae147dp-7 0.010000000000000004
    # 0x1.47ae147ae147ep-7 0.010000000000000005
    # 0x1.47ae147ae147fp-7 0.010000000000000007
    # 0x1.47ae147ae148p-7 0.010000000000000009
    # 0x1.47ae147ae1481p-7 0.01000000000000001
    # 0x1.47ae147ae1482p-7 0.010000000000000012
    # 0x1.47ae147ae1483p-7 0.010000000000000014
    # 0x1.47ae147ae1484p-7 0.010000000000000016
    # 0x1.47ae147ae1485p-7 0.010000000000000018
    # 0x1.47ae147ae1486p-7 0.01000000000000002
    # 0x1.47ae147ae1487p-7 0.010000000000000021
    # 0x1.47ae147ae1488p-7 0.010000000000000023
    # 0x1.47ae147ae1489p-7 0.010000000000000024
    # 0x1.47ae147ae148ap-7 0.010000000000000026
    # 0x1.47ae147ae148bp-7 0.010000000000000028
    # 0x1.47ae147ae148cp-7 0.01000000000000003
    # 0x1.47ae147ae148dp-7 0.010000000000000031
    # 0x1.47ae147ae148ep-7 0.010000000000000033
    f = 0.0
    100.times { f += 0.1 }
    f #=> 9.99999999999998 # should be 10.0 in the ideal world.
    10-f #=> 1.9539925233402755e-14 # the floating point error.
    10.0.next_float-10 #=> 1.7763568394002505e-15 # 1 ulp (unit in the last place).
    (10-f)/(10.0.next_float-10) #=> 11.0 # the error is 11 ulp.
    (10-f)/(10*Float::EPSILON) #=> 8.8 # approximation of the above.
    "%a" % 10 #=> "0x1.4p+3"
    "%a" % f #=> "0x1.3fffffffffff5p+3" # the last hex digit is 5. 16 - 5 = 11 ulp.
    
     static VALUE
    flo_next_float(VALUE vx)
    {
     double x, y;
     x = NUM2DBL(vx);
     y = nextafter(x, HUGE_VAL);
     return DBL2NUM(y);
    }
     
    numerator → integer click to toggle source

    Returns the numerator. The result is machine dependent.

    n = 0.3.numerator #=> 5404319552844595
    d = 0.3.denominator #=> 18014398509481984
    n.fdiv(d) #=> 0.3
    

    See also .

     static VALUE
    float_numerator(VALUE self)
    {
     double d = RFLOAT_VALUE(self);
     VALUE r;
     if (isinf(d) || isnan(d))
     return self;
     r = float_to_r(self);
     if (canonicalization && k_integer_p(r)) {
     return r;
     }
     return nurat_numerator(r);
    }
     
    phase → 0 or float click to toggle source

    Returns 0 if the value is positive, pi otherwise.

     static VALUE
    float_arg(VALUE self)
    {
     if (isnan(RFLOAT_VALUE(self)))
     return self;
     if (f_tpositive_p(self))
     return INT2FIX(0);
     return rb_const_get(rb_mMath, id_PI);
    }
     
    positive? → true or false click to toggle source

    Returns true if float is greater than 0.

     static VALUE
    flo_positive_p(VALUE num)
    {
     double f = RFLOAT_VALUE(num);
     return f > 0.0 ? Qtrue : Qfalse;
    }
     
    prev_float → float click to toggle source

    Returns the previous representable floating point number.

    (-Float::MAX).prev_float and (-Float::INFINITY).prev_float is -Float::INFINITY.

    Float::NAN.prev_float is .

    For example:

    0.01.prev_float #=> 0.009999999999999998
    1.0.prev_float #=> 0.9999999999999999
    100.0.prev_float #=> 99.99999999999999
    0.01 - 0.01.prev_float #=> 1.734723475976807e-18
    1.0 - 1.0.prev_float #=> 1.1102230246251565e-16
    100.0 - 100.0.prev_float #=> 1.4210854715202004e-14
    f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.prev_float }
    #=> 0x1.47ae147ae147bp-7 0.01
    # 0x1.47ae147ae147ap-7 0.009999999999999998
    # 0x1.47ae147ae1479p-7 0.009999999999999997
    # 0x1.47ae147ae1478p-7 0.009999999999999995
    # 0x1.47ae147ae1477p-7 0.009999999999999993
    # 0x1.47ae147ae1476p-7 0.009999999999999992
    # 0x1.47ae147ae1475p-7 0.00999999999999999
    # 0x1.47ae147ae1474p-7 0.009999999999999988
    # 0x1.47ae147ae1473p-7 0.009999999999999986
    # 0x1.47ae147ae1472p-7 0.009999999999999985
    # 0x1.47ae147ae1471p-7 0.009999999999999983
    # 0x1.47ae147ae147p-7 0.009999999999999981
    # 0x1.47ae147ae146fp-7 0.00999999999999998
    # 0x1.47ae147ae146ep-7 0.009999999999999978
    # 0x1.47ae147ae146dp-7 0.009999999999999976
    # 0x1.47ae147ae146cp-7 0.009999999999999974
    # 0x1.47ae147ae146bp-7 0.009999999999999972
    # 0x1.47ae147ae146ap-7 0.00999999999999997
    # 0x1.47ae147ae1469p-7 0.009999999999999969
    # 0x1.47ae147ae1468p-7 0.009999999999999967
    
     static VALUE
    flo_prev_float(VALUE vx)
    {
     double x, y;
     x = NUM2DBL(vx);
     y = nextafter(x, -HUGE_VAL);
     return DBL2NUM(y);
    }
     
    quo(numeric) → float click to toggle source

    Returns float / numeric, same as Float#/.

     static VALUE
    flo_quo(VALUE x, VALUE y)
    {
     return num_funcall1(x, '/', y);
    }
     
    rationalize([eps]) → rational click to toggle source

    Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|). If the optional argument eps is not given, it will be chosen automatically.

    0.3.rationalize #=> (3/10)
    1.333.rationalize #=> (1333/1000)
    1.333.rationalize(0.01) #=> (4/3)
    

    See also .

     static VALUE
    float_rationalize(int argc, VALUE *argv, VALUE self)
    {
     double d = RFLOAT_VALUE(self);
     if (d < 0.0)
     return rb_rational_uminus(float_rationalize(argc, argv, DBL2NUM(-d)));
     if (rb_check_arity(argc, 0, 1)) {
     return rb_flt_rationalize_with_prec(self, argv[0]);
     }
     else {
     return rb_flt_rationalize(self);
     }
    }
     
    round([ndigits] [, half: mode]) → integer or float click to toggle source

    Returns float rounded to the nearest value with a precision of ndigits decimal digits (default: 0).

    When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

    Returns a floating point number when ndigits is positive, otherwise returns an integer.

    1.4.round #=> 1
    1.5.round #=> 2
    1.6.round #=> 2
    (-1.5).round #=> -2
    1.234567.round(2) #=> 1.23
    1.234567.round(3) #=> 1.235
    1.234567.round(4) #=> 1.2346
    1.234567.round(5) #=> 1.23457
    34567.89.round(-5) #=> 0
    34567.89.round(-4) #=> 30000
    34567.89.round(-3) #=> 35000
    34567.89.round(-2) #=> 34600
    34567.89.round(-1) #=> 34570
    34567.89.round(0) #=> 34568
    34567.89.round(1) #=> 34567.9
    34567.89.round(2) #=> 34567.89
    34567.89.round(3) #=> 34567.89
    

    If the optional half keyword argument is given, numbers that are half-way between two possible rounded values will be rounded according to the specified tie-breaking mode:

    • :up or nil: round half away from zero (default)

    • :down: round half toward zero

    • :even: round half toward the nearest even number

      2.5.round(half: :up) #=> 3
      2.5.round(half: :down) #=> 2
      2.5.round(half: :even) #=> 2
      3.5.round(half: :up) #=> 4
      3.5.round(half: :down) #=> 3
      3.5.round(half: :even) #=> 4
      (-2.5).round(half: :up) #=> -3
      (-2.5).round(half: :down) #=> -2
      (-2.5).round(half: :even) #=> -2
      
     static VALUE
    flo_round(int argc, VALUE *argv, VALUE num)
    {
     double number, f, x;
     VALUE nd, opt;
     int ndigits = 0;
     enum ruby_num_rounding_mode mode;
     if (rb_scan_args(argc, argv, "01:", &nd, &opt)) {
     ndigits = NUM2INT(nd);
     }
     mode = rb_num_get_rounding_option(opt);
     number = RFLOAT_VALUE(num);
     if (number == 0.0) {
     return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
     }
     if (ndigits < 0) {
     return rb_int_round(flo_to_i(num), ndigits, mode);
     }
     if (ndigits == 0) {
     x = ROUND_CALL(mode, round, (number, 1.0));
     return dbl2ival(x);
     }
     if (isfinite(number)) {
     int binexp;
     frexp(number, &binexp);
     if (float_round_overflow(ndigits, binexp)) return num;
     if (float_round_underflow(ndigits, binexp)) return DBL2NUM(0);
     f = pow(10, ndigits);
     x = ROUND_CALL(mode, round, (number, f));
     return DBL2NUM(x / f);
     }
     return num;
    }
     
    to_f → self click to toggle source

    Since float is already a , returns self.

     static VALUE
    flo_to_f(VALUE num)
    {
     return num;
    }
     
    to_i → integer click to toggle source
    to_int → integer

    Returns the float truncated to an .

    1.2.to_i #=> 1
    (-1.2).to_i #=> -1
    

    Note that the limited precision of floating point arithmetic might lead to surprising results:

    (0.3 / 0.1).to_i #=> 2 (!)
    

    is an alias for .

     static VALUE
    flo_to_i(VALUE num)
    {
     double f = RFLOAT_VALUE(num);
     if (f > 0.0) f = floor(f);
     if (f < 0.0) f = ceil(f);
     return dbl2ival(f);
    }
     
    to_int → integer click to toggle source

    Returns the float truncated to an .

    1.2.to_i #=> 1
    (-1.2).to_i #=> -1
    

    Note that the limited precision of floating point arithmetic might lead to surprising results:

    (0.3 / 0.1).to_i #=> 2 (!)
    

    is an alias for .

     static VALUE
    flo_to_i(VALUE num)
    {
     double f = RFLOAT_VALUE(num);
     if (f > 0.0) f = floor(f);
     if (f < 0.0) f = ceil(f);
     return dbl2ival(f);
    }
     
    to_r → rational click to toggle source

    Returns the value as a rational.

    2.0.to_r #=> (2/1)
    2.5.to_r #=> (5/2)
    -0.75.to_r #=> (-3/4)
    0.0.to_r #=> (0/1)
    0.3.to_r #=> (5404319552844595/18014398509481984)
    

    NOTE: 0.3.to_r isn't the same as "0.3".to_r. The latter is equivalent to "3/10".to_r, but the former isn't so.

    0.3.to_r == 3/10r #=> false
    "0.3".to_r == 3/10r #=> true
    

    See also .

     static VALUE
    float_to_r(VALUE self)
    {
     VALUE f, n;
     float_decode_internal(self, &f, &n);
    #if FLT_RADIX == 2
     {
     long ln = FIX2LONG(n);
     if (ln == 0)
     return rb_rational_new1(f);
     if (ln > 0)
     return rb_rational_new1(rb_int_lshift(f, n));
     ln = -ln;
     return rb_rational_new2(f, rb_int_lshift(ONE, INT2FIX(ln)));
     }
    #else
     f = rb_int_mul(f, rb_int_pow(INT2FIX(FLT_RADIX), n));
     if (RB_TYPE_P(f, T_RATIONAL))
     return f;
     return rb_rational_new1(f);
    #endif
    }
     
    to_s → string click to toggle source

    Returns a string containing a representation of self. As well as a fixed or exponential form of the float, the call may return NaN, Infinity, and -Infinity.

     static VALUE
    flo_to_s(VALUE flt)
    {
     enum {decimal_mant = DBL_MANT_DIG-DBL_DIG};
     enum {float_dig = DBL_DIG+1};
     char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10];
     double value = RFLOAT_VALUE(flt);
     VALUE s;
     char *p, *e;
     int sign, decpt, digs;
     if (isinf(value)) {
     static const char minf[] = "-Infinity";
     const int pos = (value > 0); /* skip "-" */
     return rb_usascii_str_new(minf+pos, strlen(minf)-pos);
     }
     else if (isnan(value))
     return rb_usascii_str_new2("NaN");
     p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e);
     s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);
     if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;
     memcpy(buf, p, digs);
     xfree(p);
     if (decpt > 0) {
     if (decpt < digs) {
     memmove(buf + decpt + 1, buf + decpt, digs - decpt);
     buf[decpt] = '.';
     rb_str_cat(s, buf, digs + 1);
     }
     else if (decpt <= DBL_DIG) {
     long len;
     char *ptr;
     rb_str_cat(s, buf, digs);
     rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);
     ptr = RSTRING_PTR(s) + len;
     if (decpt > digs) {
     memset(ptr, '0', decpt - digs);
     ptr += decpt - digs;
     }
     memcpy(ptr, ".0", 2);
     }
     else {
     goto exp;
     }
     }
     else if (decpt > -4) {
     long len;
     char *ptr;
     rb_str_cat(s, "0.", 2);
     rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);
     ptr = RSTRING_PTR(s);
     memset(ptr += len, '0', -decpt);
     memcpy(ptr -= decpt, buf, digs);
     }
     else {
     exp:
     if (digs > 1) {
     memmove(buf + 2, buf + 1, digs - 1);
     }
     else {
     buf[2] = '0';
     digs++;
     }
     buf[1] = '.';
     rb_str_cat(s, buf, digs + 1);
     rb_str_catf(s, "e%+03d", decpt - 1);
     }
     return s;
    }
     
    Also aliased as:
    truncate([ndigits]) → integer or float click to toggle source

    Returns float truncated (toward zero) to a precision of ndigits decimal digits (default: 0).

    When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

    Returns a floating point number when ndigits is positive, otherwise returns an integer.

    2.8.truncate #=> 2
    (-2.8).truncate #=> -2
    1.234567.truncate(2) #=> 1.23
    34567.89.truncate(-2) #=> 34500
    

    Note that the limited precision of floating point arithmetic might lead to surprising results:

    (0.3 / 0.1).truncate #=> 2 (!)
    
     static VALUE
    flo_truncate(int argc, VALUE *argv, VALUE num)
    {
     if (signbit(RFLOAT_VALUE(num)))
     return flo_ceil(argc, argv, num);
     else
     return flo_floor(argc, argv, num);
    }
     
    zero? → true or false click to toggle source

    Returns true if float is 0.0.

     static VALUE
    flo_zero_p(VALUE num)
    {
     return flo_iszero(num) ? Qtrue : Qfalse;
    }
     

    This page was generated for Ruby

    is provided by and . .

    Generated with Ruby-doc Rdoc Generator 0.44.0.