
MySQL wizardry

By Giuseppe Maxia

This article is under the GPL.

http://www.gnu.org/copyleft/gpl.html

Table of Contents
Introduction...1

A call for help − Defining the problem..2

Opening the path...5

Some help from SQL itself...8

The golden rules..11
Putting the pieces together...12

Conclusion...17

MySQL wizardry

i

Introduction

Cross tabulations are statistical reports where you de−normalize your data and show results grouped by one
field, having one column for each distinct value of a second field.

Basic problem definition.
Starting from a list of values, we
want to group them by field A
and create a column for each
distinct value of field B.

The desired result is a table with
one column for field A, several
columns for each value of field
B, and a total column.

According to some authoritative sources (Joe Celko, "SQL for smarties") we should use specialized (and
expensive) statistical tools to achieve this purpose with a database server.
My recent experience with MySQL has shown that you don't have to invest a fortune to have server−side
cross−tabulations. The way I found it is littered with errors and disappointment, and in perspective it should
appear quite boring. This is the chronicle of how I would have liked to find out a solution.

Introduction 1

A call for help − Defining the problem
I called in the Wizard on a Friday evening. It was almost six p.m. and I was afraid he had already left for the
day. Instead, he answered at the first ring.

Wizards never go home early.

He recognized me and asked how he could help. I told him. He listed patiently, without asking silly questions
in between, and finally said "I think I could provide you with some useful tool. See you in half an hour" and
hung up.

Twenty five minutes later he was in my office, sitting in front of me and mentioning coffee. Then he started to
ask questions.
"So, what exactly do you need to do?"
"I need to get a cross−tab out of my database."
"How did you solve the problem so far?"
"In the beginning, I used to export my data to a spreadsheet, and let the users do the work. You know,
nowadays these spreadsheets can do almost anything, provided that you are smart enough. Therefore, I gave
my users the possibility of exporting records to their favorite application so that they could twist the data as
they liked."
"And why you can't do it anymore?"
"We're growing, you know. When I started the database, we had just a few hundred records, and everything
worked just fine. But then, we hit the market really hard, and before I could realize it, we had more than
ninety thousand records that were about to go down to the spreadsheets and the users complained that it was
slow and asked me to integrate the x−tab into the main application. They say that, after all, these nice desktop
databases that I don't want to mention −− the Wizard nodded approvingly −− have such features, and my
application should have it as well."
"Then you did what they asked for. You created a function to integrate the cross−tabulation into your
application." He was reading me like an open book.

"Yes, of course I did it, even though it was not easy. To minimize the amount of data transferred from the
server to the client I was only dealing with summarized data, you know, GROUP BY two fields. An then I
found a way of translating the values of the second field into columns and summing up the data."
The wizard looked at his coffee mug for a long time and said "You seem to have solved your problem then.
Haven't you?"
"Well, not exactly. Dealing with a large matrix of data is not what C language seems to be made for. I mean, it
is, but I can't cope with it as well as I can work out a few spreadsheet macros. And the algorithm has to take
care of peculiar cases where the server does not return a value for the second field, and then the management
wanted to have the cross−tab broken down by additional rows and columns, and they want such reports to be
available into the main application by Monday, and I don't think my algorithm could cope with such request.
This is why I asked your help."

I looked at him expectantly. I knew that now he could do one of two things: he could either say that the
problem was trivial and uninteresting and he would leave me in the glue, or he should ask to see the algorithm
and tell me what was wrong with it and give me a simple and efficient solution, which will make my
application scalable to solve the darn problem. He had done that before for me. He had looked at my
application, found the reason for inefficiency, suggested a simpler approach, and left me happy, wiser and
puzzled.

A call for help − Definin... 2

That day, though, he did none of that. He didn't want to see the code at all. Instead, he asked for a refill of
coffee and told me "Give me a tour of your company." I understood what he wanted. He wasn't looking for a
walk among the desks, but he wanted to see the data. I explained that I could not show him the real data, since
my boss was really concerned about the competition learning what we are up to, but happily I had some
dummy data that I was using with our real structure when I was testing the database, and I showed him that.

"This is the design of the main tables in the DB." I explained. "We have an employees table, code−related
with departments and locations, which is also related to countries. The sales table has references to the
employees and categories tables. Only employees belonging to the Sales department can be involved in sales,
but they can sell anything, from software to services to education."

The Wizard studied the diagram for a few minutes, nodding from time to time, as if recognizing an old friend.
Then he looked at me and said "OK. Let's do some cross tabulation. Do you have anything especially urgent?"

"As a matter of fact, I have more than one specific urgent job, but if you don't mind, I would like to see the
solution of a simple one, so that I can work it out on a more complex one." "It's fine with me." He said. "Show
me your case."

"OK. I will query two tables, employees and locations, and get the list of employees with the town where they
work."

I opened a Xterm in my Linux box and connected to MySQL. There I entered:

mysql> SELECT name, gender, location FROM locations INNER JOIN employees USING (loc_code);

name gender location

Luigi M Roma

Mario M Roma

Fred M Milano

Cinzia F Cagliari

Marco M Cagliari

Jim M Roma

John M Milano

Sue F Cagliari

Maria F Paris

Giselle F Marseille

Sonia F Marseille

Jacques M Marseille

Paul M Paris

Jennifer F Manchester

Julie F New York

ChristineF London

Don M London

MySQL wizardry

A call for help − Definin... 3

Sam M Manchester

Colette F New York

Connie F Boston

Guy M Boston

Steve M New York

Antonio M New York

Nina F Boston
24 rows in set (0.00 sec)

"What I would like to have," I explained, "Is a row for each town, with a column for each gender and a total
column."

MySQL wizardry

A call for help − Definin... 4

Opening the path
The wizard took a sheet of paper and drew a table

Town M F total

"We will go for it manually." He said. "This way, we are going to understand what to ask the database engine
to do." It was typical of the Wizard. When he was in this explaining mood, I should better let him talk.
"Let's start with the first row. It's Roma. The employee is male, so we write 1 under M and 0 under F. Then
we get the second line. It's again Roma. Which gender is this one? If we have a male, then we are going to add
1 to the value under M, and add a 0 under F, and so on."

Town M F total

Roma 1+1 0+0

He looked at me, as if expecting me to see the light and have a magic understanding of the algorithm he was
hinting at. My blank stare must have told him that I was still at large. "Don't you get it? It's simple. We sum to
M if the employee is male, and we sum to F if she's a female." He stressed the words sum and if. Then he
grabbed my keyboard and modified my previous statement:

mysql> SELECT location, SUM(IF(gender='M',1,0)) AS M, SUM(IF(gender='F',1,0)) AS F
FROM locations INNER JOIN employees USING (loc_code) GROUP BY location;

location M F

Boston 1 2

Cagliari 1 2

London 1 1

Manchester1 1

Marseille 1 2

Milano 2 0

New York 2 2

Paris 1 1

Roma 3 0
9 rows in set (0.00 sec)

"So we are telling the engine to do exactly the same thing that we would have done manually. Sum ... if. Only
the engine will do it faster."

I said "Wow!" but my mind was racing to see how this incredibly simple statement could be of help. "What
about the total column?" I asked.

Opening the path 5

"Oh, that. Here you are." And he modified the statement once more:

mysql> SELECT location, SUM(IF(gender='M',1,0)) AS M,
SUM(IF(gender='F',1,0)) AS F, COUNT(*) AS total
GROUP by location;

location M F total

Boston 1 2 3

Cagliari 1 2 3

London 1 1 2

Manchester1 1 2

Marseille 1 2 3

Milano 2 0 2

New York 2 2 4

Paris 1 1 2

Roma 3 0 3
9 rows in set (0.00 sec)

"I don't think I really understand, though." I said. "We need to count, but we are summing up. How comes?"
"From the SQL point of view, we are doing the same thing. COUNT of star and SUM of one are the same
thing. Try it yourself. Type a 'select COUNT star from employees'".

mysql> SELECT COUNT(*) from employees;

count(*)

24
1 row in set (0.00 sec)

"Now replace COUNT of star with SUM of one."

mysql> SELECT SUM(1) from employees;

sum(1)

24
1 row in set (0.00 sec)

"It's the same!" I said, excited.
"No, actually it's not. COUNT of star is optimized by MySQL, and it is performed from the table descriptor,
without actually counting the records. You can't realize the difference in such a small table. If you had one
million records, and you were actually counting by groups, you would see that SUM takes a couple of
milliseconds more than COUNT, and I think we can live with that. Notice that we could not use COUNT in
our cross−tab, because it would have counted all the rows anyway. Try it."

MySQL wizardry

Opening the path 6

mysql> SELECT location, COUNT(IF(gender='M',1,0)) AS M,
COUNT(IF(gender='F',1,0)) AS F,
COUNT(*) AS total
FROM locations INNER JOIN employees USING (loc_code)
GROUP BY location;

(warning: gives WRONG results!)

location M F total

Boston 3 3 3

Cagliari 3 3 3

London 2 2 2

Manchester2 2 2

Marseille 3 3 3

Milano 2 2 2

New York 4 4 4

Paris 2 2 2

Roma 3 3 3
9 rows in set (0.00 sec)

"See? That's why we have to sum up, instead of counting. COUNT is a dumb function which will count any
piece of junk it finds. SUM has some grace, in its choice."
It looked so trivial that I was ashamed of myself for not having found it alone.
But suddenly I saw something that didn't seem right to me. "Here we have a simple case, where we know all
the values that will go into the columns. But what should we do if we don't know? What if we want the
departments instead?"
The Wizard took a glance at the diagram and typed:

mysql> SELECT dept from departments;

dept

Development

Personnel

Research

Sales

Training
5 rows in set (0.01 sec)

"Yeah. I see." I said, with a hint of disappointment in my voice. "You mean that I have to compose the query
manually, entering a SUM/IF statement for each value in departments?"

MySQL wizardry

Opening the path 7

Some help from SQL itself
The Wizard smiled. "If you like to, you're welcome. However, you could get some help from the database
engine itself, provided that you ask nicely." And while he was speaking he typed a very cryptic statement:

mysql> SELECT CONCAT(', SUM(IF(dept = "',dept,'", 1,0)) AS `',dept,'`')
FROM departments;

CONCAT(', SUM(IF(dept = "',dept,'", 1,0)) AS `',dept,'`')

, SUM(IF(dept = "Development", 1,0)) AS `Development`

, SUM(IF(dept = "Personnel", 1,0)) AS `Personnel`

, SUM(IF(dept = "Research", 1,0)) AS `Research`

, SUM(IF(dept = "Sales", 1,0)) AS `Sales`

, SUM(IF(dept = "Training", 1,0)) AS `Training`
5 rows in set (0.00 sec)

"You know," he went on, "you can also use SQL to produce SQL code. This is one of the cases. You have in
front of you the list of columns that you should include in your query. Now, with some cut−and−paste, we
could get the result you want. Here."

mysql> SELECT location
, SUM(IF(dept = "Development", 1,0)) AS `Development`
, SUM(IF(dept = "Personnel", 1,0)) AS `Personnel`
, SUM(IF(dept = "Research", 1,0)) AS `Research`
, SUM(IF(dept = "Sales", 1,0)) AS `Sales`
, SUM(IF(dept = "Training", 1,0)) AS `Training`
, COUNT(*) AS total
FROM locations INNER JOIN employees USING (loc_code)
INNER JOIN departments USING (dept_code)
GROUP BY location;

location DevelopmentPersonnelResearchSalesTraining total

Boston 2 0 0 1 0 3

Cagliari 0 0 3 0 0 3

London 0 1 0 0 1 2

Manchester0 0 0 2 0 2

Marseille 2 0 0 1 0 3

Milano 0 0 0 1 1 2

New York 3 0 0 1 0 4

Paris 1 0 0 1 0 2

Roma 0 1 0 1 1 3
9 rows in set (0.36 sec)

The wizard was now unstoppable. He had reached the stage where he simply couldn't help giving away his
knowledge. "Before we go on," he said, taking possession of my keyboard, "let's see how this same method

Some help from SQL itself 8

can do more than counting. Let's replace those 1s with a numeric field, and do real summing up."

mysql> SELECT location
, SUM(IF(dept = "Development", salary,0)) AS `Development`
, SUM(IF(dept = "Personnel", salary,0)) AS `Personnel`
, SUM(IF(dept = "Research", salary,0)) AS `Research`
, SUM(IF(dept = "Sales", salary,0)) AS `Sales`
, SUM(IF(dept = "Training", salary,0)) AS `Training`
, SUM(salary) AS total
FROM locations INNER JOIN employees USING (loc_code)
INNER JOIN departments USING (dept_code)
GROUP BY location;

location DevelopmentPersonnelResearch Sales Training total

Boston 11900 0 0 5950 0 17850

Cagliari 0 0 16800 0 0 16800

London 0 5700 0 0 5700 11400

Manchester0 0 0 115500 11550

Marseille 11150 0 0 5800 0 16950

Milano 0 0 0 5550 4900 10450

New York 17850 0 0 6100 0 23950

Paris 5700 0 0 5400 0 11100

Roma 0 5000 0 5500 5100 15600
9 rows in set (0.00 sec)

"Don't forget to change also the total field. A simple SUM without IF, and your total is ready."

I was looking at the screen, which was showing what seemed to be the complete solution to my problem, but
the wizard was shaking his head. "As a matter of fact," he was saying, there is something that we can improve
here. We have two queries, in which we are reading the departments table. So we are reading it twice twice.
The whole process could be improved, by querying for department code the first time, and omitting the join
with departments the second time."

mysql> SELECT CONCAT(', SUM(IF(dept_code = "',dept_code,'", 1,0)) AS `',dept,'`')
FROM departments;

"Here. Let's get the columns once more. Good. And there it is. This one looks better."

SELECT location
, SUM(IF(dept_code = "1", 1,0)) AS `Personnel`
, SUM(IF(dept_code = "2", 1,0)) AS `Training`
, SUM(IF(dept_code = "3", 1,0)) AS `Research`
, SUM(IF(dept_code = "4", 1,0)) AS `Sales`
, SUM(IF(dept_code = "5", 1,0)) AS `Development`
, COUNT(*) AS total
FROM locations INNER JOIN employees USING (loc_code)

MySQL wizardry

Some help from SQL itself 9

GROUP BY location;

He changed the previous two SQL statements, executed them, with some cut−and−pasting in the middle, and
got exactly the same result. Now he was explaining me why he did it. "The first query is scanning all the
departments table, and we know that its results will be used to build the second query containing the
employees table, which has already a department code. Therefore, we can skip the join with departments,
since the only purpose of that join was to get the names of the departments."
"I see" was the only comment I could offer, Since I was overwhelmed by his continuous insight. I got the
idea, and I couldn't help thinking that he must have done that before. All those pieces of information were
coming just too fast for me. Luckily, all logs were on, so I knew that I would be able to get all the statements
back when he would leave. Which was not the case yet. The wizard was now ready to give me his
philosophical view of cross tabulating.

MySQL wizardry

Some help from SQL itself 10

The golden rules
"Rule number one:" −− wizards have always a rule n. 1 for everything −− "cross−tabulating is a simple
algorithm with a complex implementation. Once you know the principle, you can do everything you need
for your statistics. The difficult part is making the process automatic. You don't know in advance which
values you should use for your columns. Hence, you have to find such values every time, before creating the
second query. The real problem with cross−tabs is that there are no simple cases. Even the ones that look as
such, have sticky problems. And you should consider this as rule number two."

I was about to lose heart, but he had more for me. "On the other hand," he continued, "This algorithm is so
flexible that will let you do things that your ordinary spreadsheet won't let you. For example, let's suppose that
you want a x−tab with the number of employees by gender and the total of their salaries as well. In your
common graphical tool you can do either of them. With this system, you can combine both. It's no difficult,
just complicated. Now, if you fetch some more coffee, I'll show you."
And when I came back from the kitchenette, there was it.

mysql> SELECT location
, SUM(IF(gender='M',1,0)) AS M
, SUM(IF(gender='M',salary,0)) AS salary_M
, SUM(IF(gender='F',1,0)) AS F
, SUM(IF(gender='F',salary,0)) AS salary_F
, COUNT(*) AS empl
, SUM(salary) AS tot_salary
FROM locations INNER JOIN employees USING (loc_code) GROUP BY location;

location M salary_M F salary_F empl tot_salary

Boston 1 5800 2 12050 3 17850

Cagliari 1 5600 2 11200 3 16800

London 1 5700 1 5700 2 11400

Manchester1 5600 1 5950 2 11550

Marseille 1 5550 2 11400 3 16950

Milano 2 10450 0 0 2 10450

New York 2 11950 2 12000 4 23950

Paris 1 5400 1 5700 2 11100

Roma 3 15600 0 0 3 15600
9 rows in set (0.00 sec)

He took a sip from his mug and added, "And of course nobody could prevent you from inserting a totally
unrelated line into your query, like this one:

mysql> SELECT location ,SUM(IF(gender='M',1,0)) AS M
, SUM(IF(gender='M',salary,0)) AS salary_M
, SUM(IF(gender='F',1,0)) AS F
, SUM(IF(gender='F',salary,0)) AS salary_F
, SUM(IF(dept_code = "4", 1,0)) AS `Sales`
, COUNT(*) AS empl
, SUM(salary) AS tot_salary FROM locations
INNER JOIN employees USING (loc_code) GROUP BY location;

The golden rules 11

location M salary_M F salary_F Salesempl tot_salary

Boston 1 5800 2 12050 1 3 17850

Cagliari 1 5600 2 11200 0 3 16800

London 1 5700 1 5700 0 2 11400

Manchester1 5600 1 5950 2 2 11550

Marseille 1 5550 2 11400 1 3 16950

Milano 2 10450 0 0 1 2 10450

New York 2 11950 2 12000 1 4 23950

Paris 1 5400 1 5700 1 2 11100

Roma 3 15600 0 0 1 3 15600
9 rows in set (0.00 sec)

"Here we have results coming from three different sources: the counting of employees by gender, the sum of
their salaries by gender, and the total number of the employees in the Sales department, regardless of their
gender. I know that this particular example doesn't make much sense, but this is something that people in the
management, for reasons that completely escape my intellectual hold, want to put together. Don't
underestimate such possibility, which could prove to be useful in many occasions."

I knew by then that his enthusiasm was growing thinner, and I should have expected him to leave abruptly any
moment. I had to refuel his good disposition and ask some juicy questions. "This is really wonderful," I said,
"but in a real application you would not use SQL alone. How can I implement this algorithm with a general
purpose language?"

Putting the pieces together

The wizard startled, as if awaken from a troubled sleep and suddenly his eyes were sparkling with renewed
interest. "Yes, of course," he replied. "If we stick to one−level cross−tabulations, this algorithm will fit nicely
into any high level language. We should avoid the multi−level ones, for the moment, because the general
concept is more important than the thorny details. Let me draw you a flow−chart diagram."
I had already relinquished my desktop, and I stayed quietly at his side, while he was skillfully drawing this
diagram, which he explained almost as fast as he was designing.

"The required actions are quite simple. However, you need some planning before starting. First, you have to
identify the source for the columns. It could be the same source from where you need to count or sum, but in a
well organized and normalized database it should be in a separated table. Either way, your first action with the
database will be to query for distinct column values. Then you will merge such values within the summary
statements composing your query. And at that point you'll be ready to execute. You can only omit the initial
query if you are 100% sure that your values have not changed. This could be the case, for example, if your
column values are in a read−only table. But usually this is not the case, or else cross−tabulations wouldn't be
that hard. Well, let's start. Any preferred language?"

This was a false democratic question, which I knew by experience. I could mention any language and he
would be proficient in it, but he would reject on some ground, until I would eventually manage to name the
language he had in mind. Having gone through the motions before, I had my answer ready: "I think that Perl

MySQL wizardry

The golden rules 12

would serve the purpose," I said hastily. He nodded, approving my wisdom, and fired a copy of vim from a
xterm. "Sorry if you are an Emacs guy," but his voice betrayed his complete lack of sorrow, "Nothing like vim
to highlight Perl syntax. I am sure you can follow me into this, and besides, I have the helm." That, I knew for
sure. My computer was firmly in his possession, and I started doubting that I would ever have it back.

The wizard, unaware of my anxiety, was already writing

#!/usr/bin/perl −w

use DBI;
use strict;

(note: You can check here the full script, with plenty of comments)

Now, you would expect your average wizard to be adventurous and careless, keen of programming without
constraints. Not this one. My wizard is a wizard because he behaves like one, but, being a database wizard, he
is also very strict in matter of coding. More than once he gave me a speech on the importance of catching the
errors in advance, before they can catch you. Since I knew that lecture by heart, I did not comment. My only
contribution was to provide the IP address of my server and the location where the DBI could look for my
user−name and password. I suspect that the wizard already knew that much, but he wanted to make me feel
important by letting me provide some tiny contribution to the script.

my %params;

while (<>) { # gets the configuration from the input pipe
next if /^#/; # skips comments
my ($name,$value) = split '=',$_;
chomp $value;
$params{$name} = $value ;
}
$params{database} or die "no valid input given\n";

"We are going to read the parameters into a hash from a configuration file. They are too many for the
command line, and it's better to save them to a file, which will be even clearer. In a production case, you
would rather store those parameters into a database table. Four our purposes, we are going to use a text file.
Actually, let's write it down, before we continue. I think it would be better to start with the simple case,
location by gender."

MySQL wizardry

The golden rules 13

title=location−gender
database=xcompany
row_name=location
row_alias=town
col_name=gender
col_alias=gender
col_value=1
col_from=FROM employees
col_where=
col_order=
row_from=FROM locations INNER JOIN employees USING(loc_code)
row_where=
row_order=ORDER BY loc_sort_order
row_group=group by location

He saved those parameters into a location−gender−count.xtab and explained: "See, our parameters are the
description of the final query. In order to build the query, we need to set its parts. In this particular case, we
are not going to use a WHERE and a ORDER BY clause for the columns, but you know that we may need
them for the others, so we'll leave them. Our parsing mechanism can easily take care of the empty strings. In
this script I assume that all these parameters are properly set in the configuration file. I will skip all the error
checking on that, and you can implement it later on."

my $dbh = DBI−>connect("DBI:mysql:$params{database};"
."host=172.16.35.1;mysql_read_default_file=$ENV{HOME}/.my.cnf")
or die "can't connect $! \n";

"This is fairly simple. Just the connection to the database. Now we have a database handle $dbh and with it
we can go for the first query."

my $row_statement = "";

my $sth = $dbh−>prepare("SELECT DISTINCT $params{col_name},
$params{col_alias} "
. $params{col_from} . " " . $params{col_where} .
$params{col_order});

$sth−>execute();

while (my ($colname, $colalias) = $sth−>fetchrow_array()) {

MySQL wizardry

The golden rules 14

$row_statement .= ", SUM(IF($params{col_name} =
\"${colname}\","
. " $params{col_value}, 0)) AS `${colalias}` \n"

}

$sth−>finish();
$dbh−>disconnect();

I recognized the proceedings. He was instructing Perl to do the same thing that he was previously doing
manually. I told him that much. "Yes, exactly," he approved. "And in addition to that, using a high level
language will grant us some more freedom. Since we have already collected the field list from our
configuration file, we are not in a hurry to compose our second query. Having the parameters in a hash will
also give us some amount of control, since any missing parameter from the configuration file will be duly
reported by the Perl compiler. At this point, the only thing we need to do is to gather all the pieces together
and produce our final query."

−−−−−−−−−−−− add total column and row details

$row_statement .= ", " . (($params{col_value} eq "1")?
"COUNT(*)" : "SUM($params{col_value})")
. " AS total \n"
. $params{row_from}
. $params{row_where} ;

print "use $params{database};\n";

$row_statement =~ s/\n\n/\n/g; # remove double EOL

print "SELECT $params{row_name} AS $params{row_alias} \n",
"$row_statement\n$params{row_group} \n $params{row_order}
;\n"; # the cross table

print "SELECT 'TOTAL'\n$row_statement;\n"; # the total line

He continued explaining. "Since you have seen the manual examples and the flow−chart, what we are doing
shouldn't come as a surprise to you. We add a total line, which will be a real SUM or a COUNT, depending on
the parameter that was entered. Then we add the FROM and WHERE clause, and we don't care if this last one
is empty. The resulting script will include a USE database statement, followed by a query that should look
much like the one we entered manually with cut−and−paste."
I wanted desperately to enter the discussion, so I told him what was troubling me. "Why you did not complete
the $row_statement with the GROUP and ORDER−BY clauses? Why did you stop at the WHERE level?"
Almost annoyed by my lack of insight, he replied "You should see it by yourself. The $row_statement as I
made it is what we have in common between the normal selection and the total line. To get the grand total you

MySQL wizardry

The golden rules 15

should not GROUP, and since we are going to get only one line, it doesn't make much sense to ORDER it.
Does it? Now, since you mentioned the total, this solution is just for a quick demonstration, which I can do
with a single line of Perl. If your tables are those big babies with millions of record that you might have in
your data warehouse, then you'd better send the output of this query to a temporary table and then get the
grand total from there. For tables with less than one hundred thousand records, MySQL will slurp this kind of
cross−tabs in a blink."

He got up from my chair, and I knew that my lesson was over. "Wait a minute." I said hastily. " This script
doesn't execute the cross−tab query. How do you use it?"

Still halfway from my chair, he bent to the keyboard, and typed

$ perl xtab.pl < location−gender−count.xtab | mysql −t

"Just add your password and host, if you need it, and it will give you the X−tab."

"But? wait! I have a few questions about multi−level cross−tabulations."
He smiled in a devilish way. "I am sure you do. But I have a girlfriend who wants to discuss database theory
with me," he looked at his watch and added "in exactly ten minutes at that new Chinese restaurant downtown,
and I shouldn't make her wait. I think you have enough food for thought to fill your weekend. Give me a call
next week, and perhaps, if I can spare half an hour, I can give you a hand." And while offering his metaphoric
limb, he extended his real one to shake mine, and off he went before I could say 'son of a wizard!'

MySQL wizardry

The golden rules 16

Conclusion
DISCLAIMER

The Wizard is a fictitious character. He does not exist in the wild, although some laboratories in Outer China
are collecting evidence about the theoretical possibility that he could be real. Any resemblance with any
individual in the physical world is purely coincidental. Translated into plain English: if you think that the
Wizard looks like somebody you know, especially if he or she is a pain in the neck, it is because you are
unlucky. Wizards are grumbling fellows who call Perl or SQL their mother tongue and feel ill at ease while
speaking English (or Italian, Hungarian, Flemish or whichever language they use d to speak before learning
C++. They are usually kind and willing to please you, but they often manage to upset you while doing so.
Wizards also enjoy gathering with others of their kind, since they find common people boring. However, if
you put two wizards in the same room, you are likely to see some sparks after a while. That's why wizards are
usually alone, and they like to be left as such.

ACKNOWLEDGEMENT

I want to thank many people who made this article possible. All the programmers who created GNU, Linux,
MySQL, StarOffice, perl, DBI, nedit (I am not the Wizard. I can't cope with vi!), and many utilities without
which I would be most likely writing about embedded databases in C. (There is nothing wrong about
embedding databases, and doing that in C is quite honorable, since I have done that for a while, but MySQL is
a toy on a totally different scale). In a word, I am grateful to all the open source community, which has made
profitable exchanging knowledge (not to mention the fun!).

RESOURCES

You must have realized that I (or perhaps the Wizard) have taken for granted that you know the basics of
MySQL, SQL, client server architecture, perl, the DBI, and maybe something else that I don't recall now.
Don't be angry with me. Teaching the basics is a social duty, but sometimes it makes you feel good when you
can exchange some unusual experience. You might be interested in a few links that offer the basics that I have
so happily skipped: http://www.mysql.com/documentation One of the best manuals you can find about
MySQL, the one written by the developers themselves. In addition, http://www.devshed.com offers many
tutorials and articles for beginners (and intermediate and expert users as well). DBI can be learned online at
http://www.symbolstone.org/technology/perl/DBI About Perl, I don't dare suggesting anything that could
contravene the official policy that TIMTOWTDI (there is more than one way to do it). Larry Wall has written
some thousand pages on this subject, with the conclusion that Perl's official policy is that there is no official
policy. I would leave it at that.

SOURCE CODE

To let you appreciate the examples in this article, I prepared some scripts: The Xcompany dump file, when fed
into MySQL, will re−create the database for you. The xtab.pl script, general purpose cross−tabulation builder,
will let you feel the thrill first hand.
Some configuration files for xtab.pl will spare you the boredom of re−typing.
location−gender−count.xtab is the simplest one. Counting of employees by ocations and gender.

Conclusion 17

http://www.mysql.com/documentation
http://www.devshed.com/
http://www.symbolstone.org/technology/perl/DBI

age−gender−count.xtab will count the employees by age range (using MySQL "WHEN" instruction) and
gender.
country−dept−salary−sum.xtab sums the salaries by country and department.
month−category−sales−sum.xtab will summarize monthly sales by category.

Now, please. Don't let me do too much. Try it on your databases, and tell me how it worked.

MySQL wizardry

Conclusion 18

	Table of Contents
	Introduction
	A call for help - Defining the problem
	Opening the path
	Some help from SQL itself
	The golden rules
	Putting the pieces together

	Conclusion

