PCRE Manual - February 2003

    

NAME      PCRE - Perl-compatible regular expressions

DIFFERENCES FROM PERL
     This document describes the differences  in  the  ways  that      PCRE  and  Perl  handle regular expressions. The differences      described here are with respect to Perl 5.8.
     1. PCRE does  not  allow  repeat  quantifiers  on  lookahead      assertions. Perl permits them, but they do not mean what you      might think. For example, (?!a){3} does not assert that  the      next  three characters are not "a". It just asserts that the      next character is not "a" three times.
     2. Capturing subpatterns that occur inside  negative  looka-      head  assertions  are  counted,  but  their  entries  in the      offsets vector are never set. Perl sets its numerical  vari-      ables  from  any  such  patterns that are matched before the      assertion fails to match something (thereby succeeding), but      only  if  the negative lookahead assertion contains just one      branch.
     3. Though binary zero characters are supported in  the  sub-      ject  string,  they  are  not  allowed  in  a pattern string      because it is passed as a normal  C  string,  terminated  by      zero. The escape sequence "\0" can be used in the pattern to      represent a binary zero.
     4. The following Perl escape sequences  are  not  supported:      \l,  \u,  \L,  \U,  \P, \p, and \X. In fact these are imple-      mented by Perl's general string-handling and are not part of      its pattern matching engine. If any of these are encountered      by PCRE, an error is generated.
     5. PCRE does support the \Q...\E  escape  for  quoting  sub-      strings. Characters in between are treated as literals. This      is slightly different from Perl in that $  and  @  are  also      handled  as  literals inside the quotes. In Perl, they cause      variable interpolation (but of course  PCRE  does  not  have      variables). Note the following examples:
         Pattern            PCRE matches      Perl matches
         \Qabc$xyz\E        abc$xyz           abc followed by the                                                 contents of $xyz          \Qabc\$xyz\E       abc\$xyz          abc\$xyz          \Qabc\E\$\Qxyz\E   abc$xyz           abc$xyz
     In PCRE, the \Q...\E mechanism is not  recognized  inside  a      character class.
     8. Fairly obviously, PCRE does not support the (?{code}) and      (?p{code})  constructions. However, there is some experimen-      tal support for recursive patterns using the non-Perl  items      (?R),  (?number)  and  (?P>name).  Also,  the PCRE "callout"      feature allows an external function to be called during pat-      tern matching.
     9. There are some differences that are  concerned  with  the      settings  of  captured  strings  when  part  of a pattern is      repeated. For example, matching "aba"  against  the  pattern      /^(a(b)?)+$/  in Perl leaves $2 unset, but in PCRE it is set      to "b".
     10. PCRE  provides  some  extensions  to  the  Perl  regular      expression facilities:
     (a) Although lookbehind assertions must match  fixed  length      strings,  each  alternative branch of a lookbehind assertion      can match a different length of string. Perl  requires  them      all to have the same length.
     (b) If PCRE_DOLLAR_ENDONLY is set and PCRE_MULTILINE is  not      set,  the  $  meta-character matches only at the very end of      the string.
     (c) If PCRE_EXTRA is set, a backslash followed by  a  letter      with no special meaning is faulted.
     (d) If PCRE_UNGREEDY is set, the greediness of  the  repeti-      tion  quantifiers  is inverted, that is, by default they are      not greedy, but if followed by a question mark they are.
     (e) PCRE_ANCHORED can be used to force a pattern to be tried      only at the first matching position in the subject string.
     (f)  The  PCRE_NOTBOL,   PCRE_NOTEOL,   PCRE_NOTEMPTY,   and      PCRE_NO_AUTO_CAPTURE  options  for  pcre_exec() have no Perl      equivalents.
     (g) The (?R), (?number), and (?P>name) constructs allows for      recursive  pattern  matching  (Perl  can  do  this using the      (?p{code}) construct, which PCRE cannot support.)
     (h) PCRE supports  named  capturing  substrings,  using  the      Python syntax.
     (i) PCRE supports the  possessive  quantifier  "++"  syntax,      taken from Sun's Java package.
     (j) The (R) condition, for  testing  recursion,  is  a  PCRE      extension.
     (k) The callout facility is PCRE-specific.
Last updated: 03 February 2003 Copyright (c) 1997-2003 University of Cambridge. ----------------------------------------------------------------------
NAME      PCRE - Perl-compatible regular expressions

PCRE REGULAR EXPRESSION DETAILS
     There are two different sets of meta-characters: those  that      are  recognized anywhere in the pattern except within square      brackets, and those that are recognized in square  brackets.      Outside square brackets, the meta-characters are as follows:
       \      general escape character with several uses        ^      assert start of string (or line, in multiline mode)        $      assert end of string (or line, in multiline mode)        .      match any character except newline (by default)        [      start character class definition        |      start of alternative branch        (      start subpattern        )      end subpattern        ?      extends the meaning of (               also 0 or 1 quantifier               also quantifier minimizer        *      0 or more quantifier        +      1 or more quantifier               also "possessive quantifier"        {      start min/max quantifier
     Part of a pattern that is in square  brackets  is  called  a      "character  class".  In  a  character  class  the only meta-      characters are:
       \      general escape character        ^      negate the class, but only if the first character        -      indicates character range        [      POSIX character class (only if followed by POSIX                 syntax)        ]      terminates the character class
     The following sections describe  the  use  of  each  of  the      meta-characters.

BACKSLASH
     The backslash character has several uses. Firstly, if it  is      followed  by  a  non-alphameric character, it takes away any      special  meaning  that  character  may  have.  This  use  of      backslash  as  an  escape  character applies both inside and      outside character classes.
     For example, if you want to match a * character,  you  write      \*  in the pattern.  This escaping action applies whether or      not the following character would otherwise  be  interpreted      as  a meta-character, so it is always safe to precede a non-      alphameric with backslash to  specify  that  it  stands  for      itself. In particular, if you want to match a backslash, you      write \\.
     If a pattern is compiled with the PCRE_EXTENDED option, whi-      tespace in the pattern (other than in a character class) and      characters between a # outside a  character  class  and  the      next  newline  character  are ignored. An escaping backslash      can be used to include a whitespace or # character  as  part      of the pattern.
     If you want to remove the special meaning from a sequence of      characters, you can do so by putting them between \Q and \E.      This is different from Perl in that $ and @ are  handled  as      literals  in  \Q...\E  sequences in PCRE, whereas in Perl, $      and @ cause variable interpolation. Note the following exam-      ples:
       Pattern            PCRE matches   Perl matches
       \Qabc$xyz\E        abc$xyz        abc followed by the
                                           contents of $xyz        \Qabc\$xyz\E       abc\$xyz       abc\$xyz        \Qabc\E\$\Qxyz\E   abc$xyz        abc$xyz
     The \Q...\E sequence is recognized both inside  and  outside      character classes.
     A second use of backslash provides a way  of  encoding  non-      printing  characters  in patterns in a visible manner. There      is no restriction on the appearance of non-printing  charac-      ters,  apart from the binary zero that terminates a pattern,      but when a pattern is being prepared by text editing, it  is      usually  easier to use one of the following escape sequences      than the binary character it represents:
       \a        alarm, that is, the BEL character (hex 07)        \cx       "control-x", where x is any character        \e        escape (hex 1B)        \f        formfeed (hex 0C)        \n        newline (hex 0A)        \r        carriage return (hex 0D)        \t        tab (hex 09)        \ddd      character with octal code ddd, or backreference        \xhh      character with hex code hh        \x{hhh..} character with hex code hhh... (UTF-8 mode only)
     The precise effect of \cx is as follows: if  x  is  a  lower      case  letter,  it  is converted to upper case. Then bit 6 of      the character (hex 40) is inverted.  Thus  \cz  becomes  hex      1A, but \c{ becomes hex 3B, while \c; becomes hex 7B.

     The handling of a backslash followed by a digit other than 0      is  complicated.   Outside  a character class, PCRE reads it      and any following digits as a decimal number. If the  number      is  less  than  10, or if there have been at least that many      previous capturing left parentheses in the  expression,  the      entire  sequence is taken as a back reference. A description      of how this works is given later, following  the  discussion      of parenthesized subpatterns.
     Inside a character  class,  or  if  the  decimal  number  is      greater  than  9 and there have not been that many capturing      subpatterns, PCRE re-reads up to three octal digits  follow-      ing  the  backslash,  and  generates  a single byte from the      least significant 8 bits of the value. Any subsequent digits      stand for themselves.  For example:
       \040   is another way of writing a space        \40    is the same, provided there are fewer than 40                  previous capturing subpatterns        \7     is always a back reference        \11    might be a back reference, or another way of                  writing a tab        \011   is always a tab        \0113  is a tab followed by the character "3"        \113   might be a back reference, otherwise the                  character with octal code 113        \377   might be a back reference, otherwise                  the byte consisting entirely of 1 bits        \81    is either a back reference, or a binary zero                  followed by the two characters "8" and "1"
     Note that octal values of 100 or greater must not be  intro-      duced  by  a  leading zero, because no more than three octal      digits are ever read.
     All the sequences that define a single byte value or a  sin-      gle  UTF-8 character (in UTF-8 mode) can be used both inside      and outside character classes. In addition, inside a charac-      ter  class,  the sequence \b is interpreted as the backspace      character (hex 08). Outside a character class it has a  dif-      ferent meaning (see below).
     The third use of backslash is for specifying generic charac-      ter types:
       \d     any decimal digit        \D     any character that is not a decimal digit        \s     any whitespace character        \S     any character that is not a whitespace character        \w     any "word" character        \W     any "non-word" character
     For compatibility with Perl, \s does not match the VT  char-      acter (code 11).  This makes it different from the the POSIX      "space" class. The \s characters are HT  (9),  LF  (10),  FF      (12), CR (13), and space (32).
     A "word" character is any letter or digit or the  underscore      character,  that  is,  any  character which can be part of a      Perl "word". The definition of letters and  digits  is  con-      trolled  by PCRE's character tables, and may vary if locale-      specific matching is taking place (see "Locale  support"  in      the pcreapi page). For example, in the "fr" (French) locale,      some character codes greater than 128 are used for  accented      letters, and these are matched by \w.
     These character type sequences can appear  both  inside  and      outside  character classes. They each match one character of      the appropriate type. If the current matching  point  is  at      the end of the subject string, all of them fail, since there      is no character to match.
     The fourth use of backslash is  for  certain  simple  asser-      tions. An assertion specifies a condition that has to be met      at a particular point in  a  match,  without  consuming  any      characters  from  the subject string. The use of subpatterns      for more complicated  assertions  is  described  below.  The      backslashed assertions are
       \b     matches at a word boundary        \B     matches when not at a word boundary        \A     matches at start of subject        \Z     matches at end of subject or before newline at end        \z     matches at end of subject        \G     matches at first matching position in subject
     These assertions may not appear in  character  classes  (but      note  that  \b has a different meaning, namely the backspace      character, inside a character class).
     A word boundary is a position in the  subject  string  where      the current character and the previous character do not both      match \w or \W (i.e. one matches \w and  the  other  matches      \W),  or the start or end of the string if the first or last      character matches \w, respectively.
     The \A, \Z, and \z assertions differ  from  the  traditional      circumflex  and  dollar  (described below) in that they only      ever match at the very start and end of the subject  string,      whatever options are set. Thus, they are independent of mul-      tiline mode.
     The \G assertion is true  only  when  the  current  matching      position is at the start point of the match, as specified by      the startoffset argument of pcre_exec(). It differs from  \A      when  the  value  of  startoffset  is  non-zero.  By calling      pcre_exec() multiple times with appropriate  arguments,  you      can mimic Perl's /g option, and it is in this kind of imple-      mentation where \G can be useful.
     Note, however, that PCRE's  interpretation  of  \G,  as  the      start of the current match, is subtly different from Perl's,      which defines it as the end of the previous match. In  Perl,      these  can  be  different when the previously matched string      was empty. Because PCRE does just one match at  a  time,  it      cannot reproduce this behaviour.
     If all the alternatives of a  pattern  begin  with  \G,  the      expression  is  anchored to the starting match position, and      the "anchored" flag is set in the compiled  regular  expres-      sion.

CIRCUMFLEX AND DOLLAR
     Outside a character class, in the default matching mode, the      circumflex  character  is an assertion which is true only if      the current matching point is at the start  of  the  subject      string.  If  the startoffset argument of pcre_exec() is non-      zero, circumflex  can  never  match  if  the  PCRE_MULTILINE      option is unset. Inside a character class, circumflex has an      entirely different meaning (see below).
     Circumflex need not be the first character of the pattern if      a  number of alternatives are involved, but it should be the      first thing in each alternative in which it appears  if  the      pattern is ever to match that branch. If all possible alter-      natives start with a circumflex, that is, if the pattern  is      constrained to match only at the start of the subject, it is      said to be an "anchored" pattern. (There are also other con-      structs that can cause a pattern to be anchored.)
     A dollar character is an assertion which is true only if the      current  matching point is at the end of the subject string,      or immediately before a newline character that is  the  last      character in the string (by default). Dollar need not be the      last character of the pattern if a  number  of  alternatives      are  involved,  but it should be the last item in any branch      in which it appears.  Dollar has no  special  meaning  in  a      character class.
     The meaning of dollar can be changed so that it matches only      at   the   very   end   of   the   string,  by  setting  the      PCRE_DOLLAR_ENDONLY option at compile time.  This  does  not      affect the \Z assertion.
     The meanings of the circumflex  and  dollar  characters  are      changed  if  the  PCRE_MULTILINE option is set. When this is      the case,  they  match  immediately  after  and  immediately      before an internal newline character, respectively, in addi-      tion to matching at the start and end of the subject string.      For  example, the pattern /^abc$/ matches the subject string      "def\nabc" in multiline  mode,  but  not  otherwise.  Conse-      quently,  patterns  that  are  anchored  in single line mode      because all branches start with ^ are not anchored in multi-      line  mode,  and a match for circumflex is possible when the      startoffset  argument  of  pcre_exec()  is   non-zero.   The      PCRE_DOLLAR_ENDONLY  option  is ignored if PCRE_MULTILINE is      set.
     Note that the sequences \A, \Z, and \z can be used to  match      the  start  and end of the subject in both modes, and if all      branches of a pattern start with \A it is  always  anchored,      whether PCRE_MULTILINE is set or not.

FULL STOP (PERIOD, DOT)
     Outside a character class, a dot in the pattern matches  any      one character in the subject, including a non-printing char-      acter, but not (by default) newline.  In UTF-8 mode,  a  dot      matches  any  UTF-8  character, which might be more than one      byte  long,  except  (by  default)  for  newline.   If   the      PCRE_DOTALL  option is set, dots match newlines as well. The      handling of dot is entirely independent of the  handling  of      circumflex and dollar, the only relationship being that they      both involve newline characters. Dot has no special  meaning      in a character class.


MATCHING A SINGLE BYTE
     Outside a character class, the escape  sequence  \C  matches      any  one  byte, both in and out of UTF-8 mode. Unlike a dot,      it always matches a newline. The feature is provided in Perl      in  order  to match individual bytes in UTF-8 mode.  Because      it breaks up UTF-8 characters into  individual  bytes,  what      remains  in  the string may be a malformed UTF-8 string. For      this reason it is best avoided.
     PCRE does not allow \C to appear  in  lookbehind  assertions      (see below), because in UTF-8 mode it makes it impossible to      calculate the length of the lookbehind.

SQUARE BRACKETS
     An opening square bracket introduces a character class, ter-      minated  by  a  closing  square  bracket.  A  closing square      bracket on its own is  not  special.  If  a  closing  square      bracket  is  required as a member of the class, it should be      the first data character in the class (after an initial cir-      cumflex, if present) or escaped with a backslash.
     A character class matches a single character in the subject.      In  UTF-8 mode, the character may occupy more than one byte.      A matched character must be in the set of characters defined      by the class, unless the first character in the class defin-      ition is a circumflex, in which case the  subject  character      must not be in the set defined by the class. If a circumflex      is actually required as a member of the class, ensure it  is      not the first character, or escape it with a backslash.
     For example, the character class [aeiou] matches  any  lower      case vowel, while [^aeiou] matches any character that is not      a lower case vowel. Note that a circumflex is  just  a  con-      venient  notation for specifying the characters which are in      the class by enumerating those that are not. It  is  not  an      assertion:  it  still  consumes a character from the subject      string, and fails if the current pointer is at  the  end  of      the string.
     In UTF-8 mode, characters with values greater than  255  can      be  included  in a class as a literal string of bytes, or by      using the \x{ escaping mechanism.
     When caseless matching  is  set,  any  letters  in  a  class      represent  both their upper case and lower case versions, so      for example, a caseless [aeiou] matches "A" as well as  "a",      and  a caseless [^aeiou] does not match "A", whereas a case-      ful version would. PCRE does not support the concept of case      for characters with values greater than 255.      The newline character is never treated in any special way in      character  classes,  whatever the setting of the PCRE_DOTALL      or PCRE_MULTILINE options is. A  class  such  as  [^a]  will      always match a newline.
     The minus (hyphen) character can be used to specify a  range      of  characters  in  a  character  class.  For example, [d-m]      matches any letter between d and m, inclusive.  If  a  minus      character  is required in a class, it must be escaped with a      backslash or appear in a position where it cannot be  inter-      preted as indicating a range, typically as the first or last      character in the class.
     It is not possible to have the literal character "]" as  the      end  character  of  a  range.  A  pattern such as [W-]46] is      interpreted as a class of two characters ("W" and "-")  fol-      lowed by a literal string "46]", so it would match "W46]" or      "-46]". However, if the "]" is escaped with a  backslash  it      is  interpreted  as  the end of range, so [W-\]46] is inter-      preted as a single class containing a range followed by  two      separate characters. The octal or hexadecimal representation      of "]" can also be used to end a range.
     Ranges  operate  in  the  collating  sequence  of  character      values.  They  can  also  be  used  for characters specified      numerically, for example [\000-\037]. In UTF-8 mode,  ranges      can  include  characters  whose values are greater than 255,      for example [\x{100}-\x{2ff}].
     If a range that  includes  letters  is  used  when  caseless      matching  is set, it matches the letters in either case. For      example, [W-c] is  equivalent  to  [][\^_`wxyzabc],  matched      caselessly,  and if character tables for the "fr" locale are      in use, [\xc8-\xcb] matches accented E  characters  in  both      cases.
     The character types \d, \D, \s, \S,  \w,  and  \W  may  also      appear  in  a  character  class, and add the characters that      they match to the class. For example, [\dABCDEF] matches any      hexadecimal  digit.  A  circumflex  can conveniently be used      with the upper case character types to specify a  more  res-      tricted set of characters than the matching lower case type.      For example, the class [^\W_] matches any letter  or  digit,      but not underscore.
     All non-alphameric characters other than \,  -,  ^  (at  the      start)  and  the  terminating ] are non-special in character      classes, but it does no harm if they are escaped.

POSIX CHARACTER CLASSES
     Perl supports the  POSIX  notation  for  character  classes,      which  uses names enclosed by [: and :] within the enclosing      square brackets. PCRE also supports this notation. For exam-      ple,
       [01[:alpha:]%]
     matches "0", "1", any alphabetic character, or "%". The sup-      ported class names are
       alnum    letters and digits        alpha    letters        ascii    character codes 0 - 127        blank    space or tab only        cntrl    control characters        digit    decimal digits (same as \d)        graph    printing characters, excluding space        lower    lower case letters        print    printing characters, including space        punct    printing characters, excluding letters and digits        space    white space (not quite the same as \s)        upper    upper case letters        word     "word" characters (same as \w)        xdigit   hexadecimal digits
     The "space" characters are HT (9),  LF  (10),  VT  (11),  FF      (12),  CR  (13),  and  space  (32).  Notice  that  this list      includes the VT character (code 11). This makes "space" dif-      ferent  to  \s, which does not include VT (for Perl compati-      bility).
     The name "word" is a Perl extension, and "blank"  is  a  GNU      extension from Perl 5.8. Another Perl extension is negation,      which is indicated by a ^ character  after  the  colon.  For      example,
       [12[:^digit:]]
     matches "1", "2", or any non-digit.

VERTICAL BAR
     Vertical bar characters are  used  to  separate  alternative      patterns. For example, the pattern
       gilbert|sullivan
     matches either "gilbert" or "sullivan". Any number of alter-      natives  may  appear,  and an empty alternative is permitted      (matching the empty string).   The  matching  process  tries      each  alternative in turn, from left to right, and the first      one that succeeds is used. If the alternatives are within  a      subpattern  (defined  below),  "succeeds" means matching the      rest of the main pattern as well as the alternative  in  the      subpattern.

INTERNAL OPTION SETTING
     The   settings   of   the   PCRE_CASELESS,   PCRE_MULTILINE,      PCRE_DOTALL,  and  PCRE_EXTENDED options can be changed from      within the pattern by a  sequence  of  Perl  option  letters      enclosed between "(?" and ")". The option letters are
       i  for PCRE_CASELESS        m  for PCRE_MULTILINE        s  for PCRE_DOTALL        x  for PCRE_EXTENDED
     For example, (?im) sets caseless, multiline matching. It  is      also possible to unset these options by preceding the letter      with a hyphen, and a combined setting and unsetting such  as      (?im-sx),  which sets PCRE_CASELESS and PCRE_MULTILINE while      unsetting PCRE_DOTALL and PCRE_EXTENDED, is also  permitted.      If  a  letter  appears both before and after the hyphen, the      option is unset.
     When an option change occurs at  top  level  (that  is,  not      inside  subpattern  parentheses),  the change applies to the      remainder of the pattern that follows.   If  the  change  is      placed  right  at  the  start of a pattern, PCRE extracts it      into the global options (and it will therefore  show  up  in      data extracted by the pcre_fullinfo() function).
     An option change within a subpattern affects only that  part      of the current pattern that follows it, so
       (a(?i)b)c
     matches  abc  and  aBc  and  no  other   strings   (assuming      PCRE_CASELESS  is  not used).  By this means, options can be      made to have different settings in different  parts  of  the      pattern.  Any  changes  made  in one alternative do carry on      into subsequent branches within  the  same  subpattern.  For      example,
       (a(?i)b|c)
     matches "ab", "aB", "c", and "C", even though when  matching      "C" the first branch is abandoned before the option setting.      This is because the effects of  option  settings  happen  at      compile  time. There would be some very weird behaviour oth-      erwise.
     The PCRE-specific options PCRE_UNGREEDY and  PCRE_EXTRA  can      be changed in the same way as the Perl-compatible options by      using the characters U and X  respectively.  The  (?X)  flag      setting  is  special in that it must always occur earlier in      the pattern than any of the additional features it turns on,      even when it is at top level. It is best put at the start.

SUBPATTERNS
     Subpatterns are delimited by parentheses  (round  brackets),      which can be nested.  Marking part of a pattern as a subpat-      tern does two things:
     1. It localizes a set of alternatives. For example, the pat-      tern
       cat(aract|erpillar|)
     matches one of the words "cat",  "cataract",  or  "caterpil-      lar".  Without  the  parentheses, it would match "cataract",      "erpillar" or the empty string.
     2. It sets up the subpattern as a capturing  subpattern  (as      defined  above).   When the whole pattern matches, that por-      tion of the subject string that matched  the  subpattern  is      passed  back  to  the  caller  via  the  ovector argument of      pcre_exec(). Opening parentheses are counted  from  left  to      right (starting from 1) to obtain the numbers of the captur-      ing subpatterns.
     For example, if the string "the red king" is matched against      the pattern
       the ((red|white) (king|queen))
     the captured substrings are "red king", "red",  and  "king",      and are numbered 1, 2, and 3, respectively.
     The fact that plain parentheses fulfil two functions is  not      always  helpful.  There are often times when a grouping sub-      pattern is required without a capturing requirement.  If  an      opening  parenthesis  is  followed  by a question mark and a      colon, the subpattern does not do any capturing, and is  not      counted  when computing the number of any subsequent captur-      ing subpatterns. For  example,  if  the  string  "the  white      queen" is matched against the pattern
       the ((?:red|white) (king|queen))
     the captured substrings are "white queen" and  "queen",  and      are  numbered  1 and 2. The maximum number of capturing sub-      patterns is 65535, and the maximum depth of nesting  of  all      subpatterns, both capturing and non-capturing, is 200.
     As a  convenient  shorthand,  if  any  option  settings  are      required  at  the  start  of a non-capturing subpattern, the      option letters may appear between the "?" and the ":".  Thus      the two patterns
       (?i:saturday|sunday)        (?:(?i)saturday|sunday)
     match exactly the same set of strings.  Because  alternative      branches  are  tried from left to right, and options are not      reset until the end of the subpattern is reached, an  option      setting  in  one  branch does affect subsequent branches, so      the above patterns match "SUNDAY" as well as "Saturday".

NAMED SUBPATTERNS
     Identifying capturing parentheses by number is  simple,  but      it  can be very hard to keep track of the numbers in compli-      cated regular expressions. Furthermore, if an expression  is      modified,  the  numbers  may change. To help with the diffi-      culty, PCRE supports the naming  of  subpatterns,  something      that  Perl does not provide. The Python syntax (?P<name>...)      is used. Names consist of alphanumeric characters and under-      scores, and must be unique within a pattern.
     Named capturing parentheses are still allocated  numbers  as      well  as  names.  The  PCRE  API provides function calls for      extracting the name-to-number translation table from a  com-      piled  pattern. For further details see the pcreapi documen-      tation.

REPETITION
     Repetition is specified by quantifiers, which can follow any      of the following items:
       a literal data character        the . metacharacter        the \C escape sequence        escapes such as \d that match single characters        a character class        a back reference (see next section)        a parenthesized subpattern (unless it is an assertion)
     The general repetition quantifier specifies  a  minimum  and      maximum  number  of  permitted  matches,  by  giving the two      numbers in curly brackets (braces), separated  by  a  comma.      The  numbers  must be less than 65536, and the first must be      less than or equal to the second. For example:
       z{2,4}
     matches "zz", "zzz", or "zzzz". A closing brace on  its  own      is not a special character. If the second number is omitted,      but the comma is present, there is no upper  limit;  if  the      second number and the comma are both omitted, the quantifier      specifies an exact number of required matches. Thus
       [aeiou]{3,}
     matches at least 3 successive vowels,  but  may  match  many      more, while
       \d{8}
     matches exactly 8 digits.  An  opening  curly  bracket  that      appears  in a position where a quantifier is not allowed, or      one that does not match the syntax of a quantifier, is taken      as  a literal character. For example, {,6} is not a quantif-      ier, but a literal string of four characters.
     In UTF-8 mode, quantifiers apply to UTF-8 characters  rather      than  to  individual  bytes.  Thus,  for example, \x{100}{2}      matches two UTF-8 characters, each of which  is  represented      by a two-byte sequence.
     The quantifier {0} is permitted, causing the  expression  to      behave  as  if the previous item and the quantifier were not      present.
     For convenience (and  historical  compatibility)  the  three      most common quantifiers have single-character abbreviations:
       *    is equivalent to {0,}        +    is equivalent to {1,}        ?    is equivalent to {0,1}
     It is possible to construct infinite loops  by  following  a      subpattern  that  can  match no characters with a quantifier      that has no upper limit, for example:
       (a?)*
     Earlier versions of Perl and PCRE used to give an  error  at      compile  time  for such patterns. However, because there are      cases where this  can  be  useful,  such  patterns  are  now      accepted,  but  if  any repetition of the subpattern does in      fact match no characters, the loop is forcibly broken.
     By default, the quantifiers  are  "greedy",  that  is,  they      match  as much as possible (up to the maximum number of per-      mitted times), without causing the rest of  the  pattern  to      fail. The classic example of where this gives problems is in      trying to match comments in C programs. These appear between      the  sequences /* and */ and within the sequence, individual      * and / characters may appear. An attempt to  match  C  com-      ments by applying the pattern
       /\*.*\*/
     to the string
       /* first command */  not comment  /* second comment */
     fails, because it matches the entire  string  owing  to  the      greediness of the .*  item.
     However, if a quantifier is followed by a question mark,  it      ceases  to be greedy, and instead matches the minimum number      of times possible, so the pattern
       /\*.*?\*/
     does the right thing with the C comments. The meaning of the      various  quantifiers is not otherwise changed, just the pre-      ferred number of matches.  Do not confuse this use of  ques-      tion  mark  with  its  use as a quantifier in its own right.      Because it has two uses, it can sometimes appear doubled, as      in
       \d??\d
     which matches one digit by preference, but can match two  if      that is the only way the rest of the pattern matches.
     If the PCRE_UNGREEDY option is set (an option which  is  not      available  in  Perl),  the  quantifiers  are  not  greedy by      default, but individual ones can be made greedy by following      them  with  a  question mark. In other words, it inverts the      default behaviour.
     When a parenthesized subpattern is quantified with a minimum      repeat  count  that is greater than 1 or with a limited max-      imum, more store is required for the  compiled  pattern,  in      proportion to the size of the minimum or maximum.      If a pattern starts with .* or  .{0,}  and  the  PCRE_DOTALL      option (equivalent to Perl's /s) is set, thus allowing the .      to match  newlines,  the  pattern  is  implicitly  anchored,      because whatever follows will be tried against every charac-      ter position in the subject string, so there is no point  in      retrying  the overall match at any position after the first.      PCRE normally treats such a pattern as though it  were  pre-      ceded by \A.
     In cases where it is known that the subject string  contains      no  newlines,  it  is  worth setting PCRE_DOTALL in order to      obtain this optimization, or alternatively using ^ to  indi-      cate anchoring explicitly.
     However, there is one situation where the optimization  can-      not  be  used. When .*  is inside capturing parentheses that      are the subject of a backreference elsewhere in the pattern,      a match at the start may fail, and a later one succeed. Con-      sider, for example:
       (.*)abc\1
     If the subject is "xyz123abc123"  the  match  point  is  the      fourth  character.  For  this  reason, such a pattern is not      implicitly anchored.
     When a capturing subpattern is repeated, the value  captured      is the substring that matched the final iteration. For exam-      ple, after
       (tweedle[dume]{3}\s*)+
     has matched "tweedledum tweedledee" the value  of  the  cap-      tured  substring  is  "tweedledee".  However,  if  there are      nested capturing  subpatterns,  the  corresponding  captured      values  may  have been set in previous iterations. For exam-      ple, after
       /(a|(b))+/
     matches "aba" the value of the second captured substring  is      "b".

ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS
     With both maximizing and minimizing repetition,  failure  of      what  follows  normally  causes  the repeated item to be re-      evaluated to see if a different number of repeats allows the      rest  of  the  pattern  to  match. Sometimes it is useful to      prevent this, either to change the nature of the  match,  or      to  cause  it fail earlier than it otherwise might, when the      author of the pattern knows there is no  point  in  carrying      on.
     Consider, for example, the pattern \d+foo  when  applied  to      the subject line
       123456bar
     After matching all 6 digits and then failing to match "foo",      the normal action of the matcher is to try again with only 5      digits matching the \d+ item, and then with 4,  and  so  on,      before  ultimately  failing. "Atomic grouping" (a term taken      from Jeffrey Friedl's book) provides the means for  specify-      ing  that once a subpattern has matched, it is not to be re-      evaluated in this way.
     If we use atomic grouping  for  the  previous  example,  the      matcher  would give up immediately on failing to match "foo"      the  first  time.  The  notation  is  a  kind   of   special      parenthesis, starting with (?> as in this example:
       (?>\d+)bar
     This kind of parenthesis "locks up" the  part of the pattern      it  contains once it has matched, and a failure further into      the pattern is prevented from backtracking  into  it.  Back-      tracking  past  it to previous items, however, works as nor-      mal.
     An alternative description is that a subpattern of this type      matches  the  string  of  characters that an identical stan-      dalone pattern would match, if anchored at the current point      in the subject string.
     Atomic grouping subpatterns are not  capturing  subpatterns.      Simple  cases such as the above example can be thought of as      a maximizing repeat that must swallow everything it can. So,      while both \d+ and \d+? are prepared to adjust the number of      digits they match in order to make the rest of  the  pattern      match, (?>\d+) can only match an entire sequence of digits.
     Atomic groups in general can of course  contain  arbitrarily      complicated  subpatterns,  and  can be nested. However, when      the subpattern for an atomic group is just a single repeated      item,  as in the example above, a simpler notation, called a      "possessive quantifier" can be used.  This  consists  of  an      additional  +  character  following a quantifier. Using this      notation, the previous example can be rewritten as
       \d++bar
     Possessive quantifiers are always greedy; the setting of the      PCRE_UNGREEDY option is ignored. They are a convenient nota-      tion for the simpler forms of atomic group.  However,  there      is  no  difference in the meaning or processing of a posses-      sive quantifier and the equivalent atomic group.
     The possessive quantifier syntax is an extension to the Perl      syntax. It originates in Sun's Java package.
     When a pattern contains an unlimited repeat inside a subpat-      tern  that  can  itself  be  repeated an unlimited number of      times, the use of an atomic group is the only way  to  avoid      some  failing  matches  taking  a very long time indeed. The      pattern
       (\D+|<\d+>)*[!?]
     matches an unlimited number of substrings that  either  con-      sist  of  non-digits,  or digits enclosed in <>, followed by      either ! or ?. When it matches, it runs quickly. However, if      it is applied to
       aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
     it takes a long  time  before  reporting  failure.  This  is      because the string can be divided between the two repeats in      a large number of ways, and all have to be tried. (The exam-      ple  used  [!?]  rather  than a single character at the end,      because both PCRE and Perl have an optimization that  allows      for  fast  failure  when  a  single  character is used. They      remember the last single character that is  required  for  a      match,  and  fail early if it is not present in the string.)      If the pattern is changed to
       ((?>\D+)|<\d+>)*[!?]
     sequences of non-digits cannot be broken, and  failure  hap-      pens quickly.

BACK REFERENCES
     Outside a character class, a backslash followed by  a  digit      greater  than  0  (and  possibly  further  digits) is a back      reference to a capturing subpattern earlier (that is, to its      left)  in  the  pattern,  provided there have been that many      previous capturing left parentheses.
     However, if the decimal number following  the  backslash  is      less  than  10,  it is always taken as a back reference, and      causes an error only if there are not  that  many  capturing      left  parentheses in the entire pattern. In other words, the      parentheses that are referenced need not be to the  left  of      the  reference  for  numbers  less  than 10. See the section      entitled "Backslash" above for further details of  the  han-      dling of digits following a backslash.
     A back reference matches whatever actually matched the  cap-      turing subpattern in the current subject string, rather than      anything matching the subpattern itself (see "Subpatterns as      subroutines" below for a way of doing that). So the pattern
       (sens|respons)e and \1ibility
     matches "sense and sensibility" and "response and  responsi-      bility",  but  not  "sense  and  responsibility". If caseful      matching is in force at the time of the back reference,  the      case of letters is relevant. For example,
       ((?i)rah)\s+\1
     matches "rah rah" and "RAH RAH", but  not  "RAH  rah",  even      though  the  original  capturing subpattern is matched case-      lessly.
     Back references to named subpatterns use the  Python  syntax      (?P=name). We could rewrite the above example as follows:
       (?<p1>(?i)rah)\s+(?P=p1)
     There may be more than one back reference to the  same  sub-      pattern.  If  a  subpattern  has not actually been used in a      particular match, any back references to it always fail. For      example, the pattern
       (a|(bc))\2
     always fails if it starts to match  "a"  rather  than  "bc".      Because  there  may  be many capturing parentheses in a pat-      tern, all digits following the backslash are taken  as  part      of a potential back reference number. If the pattern contin-      ues with a digit character, some delimiter must be  used  to      terminate the back reference. If the PCRE_EXTENDED option is      set, this can be whitespace.  Otherwise an empty comment can      be used.
     A back reference that occurs inside the parentheses to which      it  refers  fails when the subpattern is first used, so, for      example, (a\1) never matches.  However, such references  can      be useful inside repeated subpatterns. For example, the pat-      tern
       (a|b\1)+
     matches any number of "a"s and also "aba", "ababbaa" etc. At      each iteration of the subpattern, the back reference matches      the character string corresponding to  the  previous  itera-      tion.  In  order  for this to work, the pattern must be such      that the first iteration does not need  to  match  the  back      reference.  This  can  be  done using alternation, as in the      example above, or by a quantifier with a minimum of zero.

ASSERTIONS
     An assertion is  a  test  on  the  characters  following  or      preceding  the current matching point that does not actually      consume any characters. The simple assertions coded  as  \b,      \B,  \A, \G, \Z, \z, ^ and $ are described above.  More com-      plicated assertions are coded as subpatterns. There are  two      kinds:  those that look ahead of the current position in the      subject string, and those that look behind it.
     An assertion subpattern is matched in the normal way, except      that  it  does not cause the current matching position to be      changed. Lookahead assertions start with  (?=  for  positive      assertions and (?! for negative assertions. For example,
       \w+(?=;)
     matches a word followed by a semicolon, but does not include      the semicolon in the match, and
       foo(?!bar)
     matches any occurrence of "foo"  that  is  not  followed  by      "bar". Note that the apparently similar pattern
       (?!foo)bar
     does not find an occurrence of "bar"  that  is  preceded  by      something other than "foo"; it finds any occurrence of "bar"      whatsoever, because the assertion  (?!foo)  is  always  true      when  the  next  three  characters  are  "bar". A lookbehind      assertion is needed to achieve this effect.
     If you want to force a matching failure at some point  in  a      pattern,  the  most  convenient  way  to  do it is with (?!)      because an empty string always matches, so an assertion that      requires there not to be an empty string must always fail.
     Lookbehind assertions start with (?<=  for  positive  asser-      tions and (?<! for negative assertions. For example,
       (?<!foo)bar
     does find an occurrence of "bar" that  is  not  preceded  by      "foo". The contents of a lookbehind assertion are restricted      such that all the strings  it  matches  must  have  a  fixed      length.  However, if there are several alternatives, they do      not all have to have the same fixed length. Thus
       (?<=bullock|donkey)
     is permitted, but
       (?<!dogs?|cats?)
     causes an error at compile time. Branches  that  match  dif-      ferent length strings are permitted only at the top level of      a lookbehind assertion. This is an extension  compared  with      Perl  (at  least  for  5.8),  which requires all branches to      match the same length of string. An assertion such as
       (?<=ab(c|de))
     is not permitted, because its single  top-level  branch  can      match two different lengths, but it is acceptable if rewrit-      ten to use two top-level branches:
       (?<=abc|abde)
     The implementation of lookbehind  assertions  is,  for  each      alternative,  to  temporarily move the current position back      by the fixed width and then  try  to  match.  If  there  are      insufficient  characters  before  the  current position, the      match is deemed to fail.
     PCRE does not allow the \C escape (which  matches  a  single      byte  in  UTF-8  mode)  to  appear in lookbehind assertions,      because it makes it impossible to calculate  the  length  of      the lookbehind.
     Atomic groups can be used  in  conjunction  with  lookbehind      assertions  to  specify efficient matching at the end of the      subject string. Consider a simple pattern such as
       abcd$
     when applied to a long string that does not  match.  Because      matching  proceeds  from  left  to right, PCRE will look for      each "a" in the subject and then see if what follows matches      the rest of the pattern. If the pattern is specified as
       ^.*abcd$
     the initial .* matches the entire string at first, but  when      this  fails  (because  there  is no following "a"), it back-      tracks to match all but the last character, then all but the      last  two  characters,  and so on. Once again the search for      "a" covers the entire string, from right to left, so we  are      no better off. However, if the pattern is written as
       ^(?>.*)(?<=abcd)
     or, equivalently,
       ^.*+(?<=abcd)
     there can be no backtracking for the .* item; it  can  match      only  the entire string. The subsequent lookbehind assertion      does a single test on the last four characters. If it fails,      the match fails immediately. For long strings, this approach      makes a significant difference to the processing time.
     Several assertions (of any sort) may  occur  in  succession.      For example,
       (?<=\d{3})(?<!999)foo
     matches "foo" preceded by three digits that are  not  "999".      Notice  that each of the assertions is applied independently      at the same point in the subject string. First  there  is  a      check that the previous three characters are all digits, and      then there is a check that the same three characters are not      "999".   This  pattern  does not match "foo" preceded by six      characters, the first of which are digits and the last three      of  which  are  not  "999".  For  example,  it doesn't match      "123abcfoo". A pattern to do that is
       (?<=\d{3}...)(?<!999)foo
     This time the first assertion looks  at  the  preceding  six      characters,  checking  that  the first three are digits, and      then the second assertion checks that  the  preceding  three      characters are not "999".
     Assertions can be nested in any combination. For example,
       (?<=(?<!foo)bar)baz
     matches an occurrence of "baz" that  is  preceded  by  "bar"      which in turn is not preceded by "foo", while
       (?<=\d{3}(?!999)...)foo
     is another pattern which matches  "foo"  preceded  by  three      digits and any three characters that are not "999".
     Assertion subpatterns are not capturing subpatterns, and may      not  be  repeated,  because  it makes no sense to assert the      same thing several times. If any kind of assertion  contains      capturing  subpatterns  within it, these are counted for the      purposes of numbering the capturing subpatterns in the whole      pattern.   However,  substring capturing is carried out only      for positive assertions, because it does not make sense  for      negative assertions.

CONDITIONAL SUBPATTERNS
     It is possible to cause the matching process to obey a  sub-      pattern  conditionally  or to choose between two alternative      subpatterns, depending on the result  of  an  assertion,  or      whether  a previous capturing subpattern matched or not. The      two possible forms of conditional subpattern are
       (?(condition)yes-pattern)        (?(condition)yes-pattern|no-pattern)
     If the condition is satisfied, the yes-pattern is used; oth-      erwise  the  no-pattern  (if  present) is used. If there are      more than two alternatives in the subpattern, a compile-time      error occurs.
     There are three kinds of condition. If the text between  the      parentheses  consists of a sequence of digits, the condition      is satisfied if the capturing subpattern of that number  has      previously  matched.  The  number must be greater than zero.      Consider  the  following  pattern,   which   contains   non-      significant white space to make it more readable (assume the      PCRE_EXTENDED option) and to divide it into three parts  for      ease of discussion:
       ( \( )?    [^()]+    (?(1) \) )
     The first part matches an optional opening parenthesis,  and      if  that character is present, sets it as the first captured      substring. The second part matches one  or  more  characters      that  are  not  parentheses. The third part is a conditional      subpattern that tests whether the first set  of  parentheses      matched  or  not.  If  they did, that is, if subject started      with an opening parenthesis, the condition is true,  and  so      the  yes-pattern  is  executed  and a closing parenthesis is      required. Otherwise, since no-pattern is  not  present,  the      subpattern  matches  nothing.  In  other words, this pattern      matches a sequence of non-parentheses,  optionally  enclosed      in parentheses.
     If the condition is the string (R), it  is  satisfied  if  a      recursive  call  to the pattern or subpattern has been made.      At "top level", the condition is  false.   This  is  a  PCRE      extension.  Recursive  patterns  are  described  in the next      section.
     If the condition is not a sequence of digits or (R), it must      be  an assertion.  This may be a positive or negative looka-      head or lookbehind assertion. Consider this  pattern,  again      containing  non-significant  white  space,  and with the two      alternatives on the second line:
       (?(?=[^a-z]*[a-z])        \d{2}-[a-z]{3}-\d{2}  |  \d{2}-\d{2}-\d{2} )
     The condition is a positive lookahead assertion that matches      an optional sequence of non-letters followed by a letter. In      other words, it tests for  the  presence  of  at  least  one      letter  in the subject. If a letter is found, the subject is      matched against  the  first  alternative;  otherwise  it  is      matched  against the second. This pattern matches strings in      one of the two forms dd-aaa-dd or dd-dd-dd,  where  aaa  are      letters and dd are digits.

COMMENTS
     The sequence (?# marks the start of a comment which  contin-      ues  up  to the next closing parenthesis. Nested parentheses      are not permitted. The characters that  make  up  a  comment      play no part in the pattern matching at all.
     If the PCRE_EXTENDED option is set, an unescaped # character      outside  a character class introduces a comment that contin-      ues up to the next newline character in the pattern.

RECURSIVE PATTERNS
     Consider the problem of matching a  string  in  parentheses,      allowing  for  unlimited nested parentheses. Without the use      of recursion, the best that can be done is to use a  pattern      that  matches  up  to some fixed depth of nesting. It is not      possible to handle an arbitrary nesting depth. Perl has pro-      vided  an  experimental facility that allows regular expres-      sions to recurse (amongst other things).  It  does  this  by      interpolating  Perl  code in the expression at run time, and      the code can refer to the expression itself. A Perl  pattern      to solve the parentheses problem can be created like this:
       $re = qr{\( (?: (?>[^()]+) | (?p{$re}) )* \)}x;
     The (?p{...}) item interpolates Perl code at run  time,  and      in  this  case refers recursively to the pattern in which it      appears. Obviously, PCRE cannot support the interpolation of      Perl  code.  Instead,  it  supports  some special syntax for      recursion of the entire pattern,  and  also  for  individual      subpattern recursion.
     The special item that consists of (? followed  by  a  number      greater  than  zero and a closing parenthesis is a recursive      call of the subpattern of the given number, provided that it      occurs inside that subpattern. (If not, it is a "subroutine"      call, which is described in the next section.)  The  special      item  (?R) is a recursive call of the entire regular expres-      sion.
     For example, this PCRE pattern solves the nested parentheses      problem  (assume  the  PCRE_EXTENDED  option  is set so that      white space is ignored):
       \( ( (?>[^()]+) | (?R) )* \)
     First it matches an opening parenthesis. Then it matches any      number  of substrings which can either be a sequence of non-      parentheses, or a recursive  match  of  the  pattern  itself      (that  is  a  correctly  parenthesized  substring).  Finally      there is a closing parenthesis.
     If this were part of a larger pattern, you would not want to      recurse the entire pattern, so instead you could use this:
       ( \( ( (?>[^()]+) | (?1) )* \) )
     We have put the pattern into  parentheses,  and  caused  the      recursion  to refer to them instead of the whole pattern. In      a larger pattern, keeping track of parenthesis  numbers  can      be   tricky.   It  may  be  more  convenient  to  use  named      parentheses instead. For this, PCRE uses (?P>name), which is      an  extension  to the Python syntax that PCRE uses for named      parentheses (Perl does not provide  named  parentheses).  We      could rewrite the above example as follows:
       (?<pn> \( ( (?>[^()]+) | (?P>pn) )* \) )
     This particular example pattern  contains  nested  unlimited      repeats,  and  so  the  use  of atomic grouping for matching      strings of non-parentheses is important  when  applying  the      pattern to strings that do not match. For example, when this      pattern is applied to
       (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa()
     it yields "no match" quickly. However, if atomic grouping is      not used, the match runs for a very long time indeed because      there are so many different ways the +  and  *  repeats  can      carve  up  the  subject,  and  all  have to be tested before      failure can be reported.      At the end of a match, the values set for any capturing sub-      patterns are those from the outermost level of the recursion      at which the subpattern value is set.  If you want to obtain      intermediate  values,  a  callout  function can be used (see      below and the pcrecallout  documentation).  If  the  pattern      above is matched against
       (ab(cd)ef)
     the value for the capturing parentheses is  "ef",  which  is      the  last  value  taken  on  at the top level. If additional      parentheses are added, giving
       \( ( ( (?>[^()]+) | (?R) )* ) \)           ^                        ^           ^                        ^
     the string they capture is "ab(cd)ef", the contents  of  the      top  level  parentheses. If there are more than 15 capturing      parentheses in a pattern, PCRE has to obtain extra memory to      store  data  during  a  recursion,  which  it  does by using      pcre_malloc, freeing it  via  pcre_free  afterwards.  If  no      memory   can   be   obtained,   the  match  fails  with  the      PCRE_ERROR_NOMEMORY error.
     Do not confuse the (?R) item with the condition  (R),  which      tests  for  recursion.  Consider this pattern, which matches      text in angle brackets, allowing for arbitrary nesting. Only      digits are allowed in nested brackets (that is, when recurs-      ing), whereas any characters  are  permitted  at  the  outer      level.
       < (?: (?(R) \d++  | [^<>]*+) | (?R)) * >
     In this pattern, (?(R) is the start of a conditional subpat-      tern,  with two different alternatives for the recursive and      non-recursive cases. The (?R) item is the  actual  recursive      call.

SUBPATTERNS AS SUBROUTINES
     If the syntax for a recursive subpattern  reference  (either      by  number  or  by  name) is used outside the parentheses to      which it refers, it operates like a subroutine in a program-      ming  language. An earlier example pointed out that the pat-      tern
       (sens|respons)e and \1ibility
     matches "sense and sensibility" and "response and  responsi-      bility",  but not "sense and responsibility". If instead the      pattern
       (sens|respons)e and (?1)ibility
     is used, it does match "sense and responsibility" as well as      the other two strings. Such references must, however, follow      the subpattern to which they refer.
----------------------------------------------------------------------
NAME      PCRE - Perl-compatible regular expressions

PCRE PERFORMANCE
     Certain items that may appear in regular expression patterns      are  more efficient than others. It is more efficient to use      a character class like [aeiou] than a  set  of  alternatives      such  as  (a|e|i|o|u). In general, the simplest construction      that provides the required behaviour  is  usually  the  most      efficient.  Jeffrey  Friedl's book contains a lot of discus-      sion about optimizing regular expressions for efficient per-      formance.
     When a pattern begins with .*  not  in  parentheses,  or  in      parentheses that are not the subject of a backreference, and      the PCRE_DOTALL option is set,  the  pattern  is  implicitly      anchored  by PCRE, since it can match only at the start of a      subject string. However, if PCRE_DOTALL  is  not  set,  PCRE      cannot  make  this optimization, because the . metacharacter      does not then match a newline, and  if  the  subject  string      contains  newlines, the pattern may match from the character      immediately following one of them instead of from  the  very      start. For example, the pattern
       .*second
     matches the subject "first\nand second" (where \n stands for      a newline character), with the match starting at the seventh      character. In order to do this, PCRE has to retry the  match      starting after every newline in the subject.
     If you are using such a pattern with subject strings that do      not  contain  newlines,  the best performance is obtained by      setting PCRE_DOTALL, or starting the  pattern  with  ^.*  to      indicate  explicit anchoring. That saves PCRE from having to      scan along the subject looking for a newline to restart at.
     Beware of patterns that contain nested  indefinite  repeats.      These  can  take a long time to run when applied to a string      that does not match. Consider the pattern fragment
       (a+)*
     This can match "aaaa" in 33 different ways, and this  number      increases  very  rapidly  as  the string gets longer. (The *      repeat can match 0, 1, 2, 3, or 4 times,  and  for  each  of      those  cases other than 0, the + repeats can match different      numbers of times.) When the remainder of the pattern is such      that  the entire match is going to fail, PCRE has in princi-      ple to try every possible variation, and this  can  take  an      extremely long time.      An optimization catches some of the more simple  cases  such      as
       (a+)*b
     where a literal character follows. Before embarking  on  the      standard matching procedure, PCRE checks that there is a "b"      later in the subject string, and if there is not,  it  fails      the  match  immediately. However, when there is no following      literal this optimization cannot be used. You  can  see  the      difference by comparing the behaviour of
       (a+)*\d
     with the pattern above. The former gives  a  failure  almost      instantly  when  applied  to a whole line of "a" characters,      whereas the latter takes an appreciable  time  with  strings      longer than about 20 characters.
Last updated: 03 February 2003 Copyright (c) 1997-2003 University of Cambridge.