-- classlib.lua 2.03 -- PRIVATE --[[ Define unique value for identifying ambiguous base objects and inherited attributes. Ambiguous values are normally removed from classes and objects, but if keep_ambiguous == true they are left there and the ambiguous value is made to behave in a way useful for debugging. ]] local ambiguous = { __type = 'ambiguous' } local remove_ambiguous if keep_ambiguous then -- Make ambiguous complain about everything except tostring() local function invalid(operation) return function() error('Invalid ' .. operation .. ' on ambiguous') end end local ambiguous_mt = { __add = invalid('addition'), __sub = invalid('substraction'), __mul = invalid('multiplication'), __div = invalid('division'), __mod = invalid('modulus operation'), __pow = invalid('exponentiation'), __unm = invalid('unary minus'), __concat = invalid('concatenation'), __len = invalid('length operation'), __eq = invalid('equality comparison'), __lt = invalid('less than'), __le = invalid('less or equal'), __index = invalid('indexing'), __newindex = invalid('new indexing'), __call = invalid('call'), __tostring = function() return 'ambiguous' end, __tonumber = invalid('conversion to number') } setmetatable(ambiguous, ambiguous_mt) -- Don't remove ambiguous values from classes and objects remove_ambiguous = function() end else -- Remove ambiguous values from classes and objects remove_ambiguous = function(t) for k, v in pairs(t) do if v == ambiguous then t[k] = nil end end end end --[[ Reserved attribute names. ]] local reserved = { __index = true, __newindex = true, __type = true, __class = true, __bases = true, __inherited = true, __from = true, __shared = true, __user_init = true, __name = true, __initialized = true } --[[ Some special user-set attributes are renamed. ]] local rename = { __init = '__user_init', __set = '__user_set', __get = '__user_get' } --[[ The metatable of all classes, containing: To be used by the classes: __call() for creating instances __init() default constructor is_a() for checking object and class types implements() for checking interface support For internal use: __newindex() for controlling class population ]] local class_mt = {} class_mt.__index = class_mt --[[ This controls class population. Here 'self' is a class being populated by inheritance or by the user. ]] function class_mt:__newindex(name, value) -- Rename special user-set attributes if rename[name] then name = rename[name] end -- __user_get() needs an __index() handler if name == '__user_get' then self.__index = value and function(obj, k) local v = self[k] if v == nil and not reserved[k] then v = value(obj, k) end return v end or self -- __user_set() needs a __newindex() handler elseif name == '__user_set' then self.__newindex = value and function(obj, k, v) if reserved[k] or not value(obj, k, v) then rawset(obj, k, v) end end or nil end -- Assign the attribute rawset(self, name, value) end --[[ This function creates an object of a certain class and calls itself recursively to create one child object for each base class. Base objects of unnamed base classes are accessed by using the base class as an index into the object, base objects of named base classes are accessed as fields of the object with the names of their respective base classes. Classes derived in shared mode will create only a single base object. Unambiguous grandchildren are inherited by the parent if they do not collide with direct children. ]] local function build(class, shared_objs, shared) -- Repository for storing shared objects shared_objs = shared_objs or {} -- Shared inheritance creates a single shared child per base class if shared and shared_objs[class] then return shared_objs[class] end -- New object local obj = { __type = 'object' } -- Repository for storing inherited base objects local inherited = {} -- Build child objects for each base class for i, base in ipairs(class.__bases) do local child = build(base, shared_objs, class.__shared[base]) obj[base.__name] = child -- Get inherited grandchildren from this child for c, grandchild in pairs(child) do -- We can only accept one inherited grandchild of each class, -- otherwise this is an ambiguous reference if not inherited[c] then inherited[c] = grandchild elseif inherited[c] ~= grandchild then inherited[c] = ambiguous end end end -- Accept inherited grandchildren if they don't collide with -- direct children for k, v in pairs(inherited) do if not obj[k] then obj[k] = v end end -- Remove ambiguous inherited grandchildren remove_ambiguous(obj) -- Object is ready setmetatable(obj, class) -- If shared, add it to the repository of shared objects if shared then shared_objs[class] = obj end return obj end --[[ The __call() operator creates an instance of the class and initializes it. ]] function class_mt:__call(...) local obj = build(self) obj:__init(...) return obj end --[[ The implements() method checks that an object or class supports the interface of a target class. This means it can be passed as an argument to any function that expects the target class. We consider only functions and callable objects to be part of the interface of a class. ]] function class_mt:implements(class) -- Auxiliary function to determine if something is callable local function is_callable(v) if v == ambiguous then return false end if type(v) == 'function' then return true end local mt = getmetatable(v) return mt and type(mt.__call) == 'function' end -- Check we have all the target's callables (except reserved names) for k, v in pairs(class) do if not reserved[k] and is_callable(v) and not is_callable(self[k]) then return false end end return true end --[[ The is_a() method checks the type of an object or class starting from its class and following the derivation chain upwards looking for the target class. If the target class is found, it checks that its interface is supported (this may fail in multiple inheritance because of ambiguities). ]] function class_mt:is_a(class) -- If our class is the target class this is trivially true if self.__class == class then return true end -- Auxiliary function to determine if a target class is one of a list of -- classes or one of their bases local function find(target, classlist) for i, class in ipairs(classlist) do if class == target or find(target, class.__bases) then return true end end return false end -- Check that we derive from the target if not find(class, self.__bases) then return false end -- Check that we implement the target's interface. return self:implements(class) end --[[ Factory-supplied constructor, calls the user-supplied constructor if any, then calls the constructors of the bases to initialize those that were not initialized before. Objects are initialized exactly once. ]] function class_mt:__init(...) if self.__initialized then return end if self.__user_init then self:__user_init(...) end for i, base in ipairs(self.__bases) do self[base.__name]:__init(...) end self.__initialized = true end -- PUBLIC --[[ Utility type and interface checking functions ]] function typeof(value) local t = type(value) return t =='table' and value.__type or t end function classof(value) local t = type(value) return t == 'table' and value.__class or nil end function classname(value) if not classof(value) then return nil end local name = value.__name return type(name) == 'string' and name or nil end function implements(value, class) return classof(value) and value:implements(class) or false end function is_a(value, class) return classof(value) and value:is_a(class) or false end --[[ Use a table to control class creation and naming. ]] class = {} local mt = {} setmetatable(class, mt) --[[ Create a named or unnamed class by calling class([name, ] ...). Arguments are an optional string to set the class name and the classes or shared classes to be derived from. ]] function mt:__call(...) local arg = {...} -- Create a new class local c = { __type = 'class', __bases = {}, __shared = {} } c.__class = c c.__index = c -- A first string argument sets the name of the class. if type(arg[1]) == 'string' then c.__name = arg[1] table.remove(arg, 1) else c.__name = c end -- Repository of inherited attributes local inherited = {} local from = {} -- Inherit from the base classes for i, base in ipairs(arg) do -- Get the base and whether it is inherited in shared mode local basetype = typeof(base) local shared = basetype == 'share' assert(basetype == 'class' or shared, 'Base ' .. i .. ' is not a class or shared class') if shared then base = base.__class end -- Just in case, check this base is not repeated assert(c.__shared[base] == nil, 'Base ' .. i .. ' is duplicated') -- Accept it c.__bases[i] = base c.__shared[base] = shared -- Get attributes that could be inherited from this base for k, v in pairs(base) do -- Skip reserved and ambiguous attributes if not reserved[k] and v ~= ambiguous and inherited[k] ~= ambiguous then -- Where does this attribute come from? local new_from -- Check if the attribute was inherited by the base local base_inherited = base.__inherited[k] if base_inherited then -- If it has been redefined, cancel this inheritance if base_inherited ~= v then -- (1) base.__inherited[k] = nil base.__from[k] = nil -- It is still inherited, get it from the original else new_from = base.__from[k] end end -- If it is not inherited by the base, it originates there new_from = new_from or { class = base, shared = shared } -- Accept a first-time inheritance local current_from = from[k] if not current_from then from[k] = new_from -- Wrap methods so that they are called with the correct -- base object self. For functions that are not methods -- this creates some useless code. if type(v) == 'function' then local origin = new_from.class inherited[k] = function(self, ...) return origin[k](self[origin.__name], ...) end -- Properties are copied else inherited[k] = v end -- Attributes inherited more than once are ambiguous unless -- they originate in the same shared class. elseif current_from.class ~= new_from.class or not current_from.shared or not new_from.shared then inherited[k] = ambiguous from[k] = nil end end end end -- Remove ambiguous inherited attributes remove_ambiguous(inherited) -- Set the metatable now, it monitors attribute setting and does some -- special processing for some of them. setmetatable(c, class_mt) -- Set inherited attributes in the class, they may be redefined afterwards for k, v in pairs(inherited) do c[k] = v end -- checked at (1) c.__inherited = inherited c.__from = from return c end --[[ Create a named class and assign it to a global variable of the same name. Example: class.A(...) is equivalent to (global) A = class('A', ...). ]] function mt:__index(name) return function(...) local c = class(name, ...) getfenv()[name] = c return c end end --[[ Wrap a class for shared derivation. ]] function shared(class) assert(typeof(class) == 'class', 'Argument is not a class') return { __type = 'share', __class = class } end