--[[ Copyright (c) 2016-present, Facebook, Inc. All rights reserved. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. An additional grant of patent rights can be found in the PATENTS file in the same directory. ]]-- local tnt = require 'torchnet.env' local argcheck = require 'argcheck' local utils = require 'torchnet.utils' local doc = require 'argcheck.doc' doc[[ ### tnt.transform *Torchnet* provides a set of general data transformations. These transformations are either directly on the data (e.g., normalization) or on their structure. This is particularly handy when manipulating [tnt.Dataset](#tnt.Dataset). Most of the transformations are simple but can be [composed](#transform.compose) or [merged](#transform.merge). ]] local transform = {} tnt.transform = transform local unpack = unpack or table.unpack doc[[ #### transform.identity(...) The identity transform takes any input and return it as it is. For example, this function is useful when composing transformations on data from multiple sources, and some of the sources must not be transformed. ]] transform.identity = function(...) local args = {...} return function() return unpack(args) end end transform.compose = argcheck{ doc = [[ #### transform.compose(@ARGP) @ARGT This function takes a `table` of functions and composes them to return one transformation. This function assumes that the table of transformations is indexed by contiguous ordered keys starting at 1. The transformations are composed in the ascending order. For example, the following code: ```lua > f = transform.compose{ [1] = function(x) return 2*x end, [2] = function(x) return x + 10 end, foo = function(x) return x / 2 end, [4] = function(x) return x - x end } > f(3) 16 ``` is equivalent to compose the transformations stored in [1] and [2], i.e., defining the following transformation: ```lua > f = function(x) return 2*x + 10 end ``` Note that transformations stored with keys `foo` and `4` are ignored. ]], {name='transforms', type='table'}, call = function(transforms) for k,v in ipairs(transforms) do assert(type(v) == 'function', 'table of functions expected') end transforms = utils.table.copy(transforms) return function(z) for _, trans in ipairs(transforms) do z = trans(z) end return z end end } transform.merge = argcheck{ doc = [[ #### transform.merge(@ARGP) @ARGT This function takes a `table` of transformations and merge them into one transformation. Once apply to an input, this transformation will produce a `table` of output, containing the transformed input. For example, the following code: ```lua > f = transform.merge{ [1] = function(x) return 2*x end, [2] = function(x) return x + 10 end, foo = function(x) return x / 2 end, [4] = function(x) return x - x end } ``` produces a function which applies a set of transformations to the same input: ```lua > f(3) { 1 : 6 2 : 13 foo : 1.5 4 : 0 } ``` ]], {name='transforms', type='table'}, call = function(transforms) for k,v in pairs(transforms) do assert(type(v) == 'function', 'table of functions expected') end transforms = utils.table.copy(transforms) return function(z) local newz = {} for k, trans in pairs(transforms) do newz[k] = trans(z) end return utils.table.mergetensor(newz) end end } transform.tablenew = argcheck{ doc = [[ #### transform.tablenew() This function creates a new table of functions from an existing table of functions. ]], call = function() return function(func) local tbl = {} for k,v in pairs(func) do tbl[k] = v end return tbl end end } transform.tableapply = argcheck{ doc = [[ #### transform.tableapply(@ARGP) @ARGT This function applies a transformation to a table of input. It return a table of output of the same size as the input. For example, the following code: ```lua > f = transform.tableapply(function(x) return 2*x end) ``` produces a function which multiplies any input by 2: ```lua > f({[1] = 1, [2] = 2, foo = 3, [4] = 4}) { 1 : 2 2 : 4 foo : 6 4 : 8 } ``` ]], {name='transform', type='function'}, call = function(transform) return function(tbl) return utils.table.foreach(tbl, transform) end end } transform.tablemergekeys = argcheck{ doc = [[ #### transform.tablemergekeys() This function merges tables by key. More precisely, the input must be a `table` of `table` and this function will reverse the table orderto make the keys from the nested table accessible first. For example, if the input is: ```lua > x = { sample1 = {input = 1, target = "a"} , sample2 = {input = 2, target = "b", flag = "hard"} ``` Then apply this function will produce: ```lua > transform.tablemergekeys(x) { input : { sample1 : 1 sample2 : 2 } target : { sample1 : "a" sample2 : "b" } flag : { sample2: "hard" } } ``` ]], call = function() return function(tbl) local mergedtbl = {} for idx, elem in ipairs(tbl) do for key, value in pairs(elem) do if not mergedtbl[key] then mergedtbl[key] = {} end mergedtbl[key][idx] = value end end return mergedtbl end end } transform.makebatch = argcheck{ doc = [[ #### transform.makebatch(@ARGP) @ARGT This function is used in many `tnt.Dataset` to format samples in the format used by the `tnt.Engine`. This function first [merges keys](#transform.tablemergekeys) to produces a table of output. Then, transform this table into a tensor by either using a `merge` transformation provided by the user or by simply concatenating the table into a tensor directly. This function uses the [compose](#transform.compose) transform to apply successive transformations. ]], {name='merge', type='function', opt=true}, call = function(merge) local makebatch if merge then makebatch = transform.compose{ transform.tablemergekeys(), merge } else makebatch = transform.compose{ transform.tablemergekeys(), transform.tableapply( function(field) if utils.table.canmergetensor(field) then return utils.table.mergetensor(field) else return field end end ) } end return function(samples) assert(type(samples) == 'table', 'makebatch: table of samples expected') return makebatch(samples) end end } transform.randperm = argcheck{ doc = [[ #### transform.randperm(@ARGP) @ARGT This function create a vector containing a permutation of the indices from 1 to `size`. This vector is a `LongTensor` and `size` must be a number. Once the vector created, this function can be used to call a specific indices in it. For example: ```lua > p = transform.randperm(3) ``` creates a function `p` which contains a permutation of indices: ```lua > p(1) 2 > p(2) 1 > p(3) 3 ``` ]], {name="size", type="number"}, call = function(size) local perm = torch.randperm(size, 'torch.LongTensor') return function(idx) return perm[idx] end end } transform.normalize = argcheck{ doc = [[ #### transform.normalize(@ARGP) @ARGT This function normalizes data, i.e., it removes its mean and divide it by its standard deviation. The input must be a `Tensor`. Once create, a `threshold` can be given (must be a number). Then, the data will be divided by their standard deviation, only if this deviation is greater than the `threshold`. This is handy, if the deviation is small and deviding by it could lead to unstability. ]], {name='threshold', type='number', default=0}, call = function(threshold) return function(z) local std = z:std() z:add(-z:mean()) if std > threshold then z:div(std) end return z end end } return transform