--finding the nearest-point on a quad bezier curve using closed form (3rd degree equation) solution. --solution from http://blog.gludion.com/2009/08/distance-to-quadratic-bezier-curve.html adapted by Cosmin Apreutesei. if not ... then require'path2d_hit_demo'; return end local bezier2 = require'path2d_bezier2' local solve_equation3 = require'eq'.solve3 local distance2 = require'path2d_point'.distance2 local point = bezier2.point local function test_solution(mind, minx, miny, mint, t, x0, y0, x1, y1, x2, y2, x3, y3) if t and t >= 0 and t <= 1 then local x, y = point(t, x1, y1, x2, y2, x3, y3) local d = distance2(x0, y0, x, y) if d < mind then mind, minx, miny, mint = d, x, y, t end end return mind, minx, miny, mint end --shortest distance-squared from point (x0, y0) to a quad bezier curve, plus the touch point, --and the parametric value t on the curve where the touch point splits the curve. function bezier2.hit(x0, y0, x1, y1, x2, y2, x3, y3) local Ax, Ay = x2 - x1, y2 - y1 --A = P2-P1 local Bx, By = x3 - x2 - Ax, y3 - y2 - Ay --B = P3-P2-A, also P3-2*P2+P1 local Mx, My = x1 - x0, y1 - y0 --M = P1-P0 local a = Bx^2 + By^2 --a = B^2 local b = 3 * (Ax * Bx + Ay * By) --b = 3*AxB local c = 2 * (Ax^2 + Ay^2) + Mx * Bx + My * By --c = 2*A^2+MxB local d = Mx * Ax + My * Ay --d = MxA local t1, t2, t3 = solve_equation3(a, b, c, d) --solve a*t^3 + b*t^2 + c*t + d = 0 local mind, minx, miny, mint = 1/0 --shortest distance, touch point, and the parametric value for the touch point. --test all solutions for shortest distance mind, minx, miny, mint = test_solution(mind, minx, miny, mint, t1, x0, y0, x1, y1, x2, y2, x3, y3) mind, minx, miny, mint = test_solution(mind, minx, miny, mint, t2, x0, y0, x1, y1, x2, y2, x3, y3) mind, minx, miny, mint = test_solution(mind, minx, miny, mint, t3, x0, y0, x1, y1, x2, y2, x3, y3) --also test distances to beginning and end of the curve, where t = 0 and 1 respectively. local d = distance2(x0, y0, x1, y1) if d < mind then mind, minx, miny, mint = d, x1, y1, 0 end local d = distance2(x0, y0, x3, y3) if d < mind then mind, minx, miny, mint = d, x3, y3, 1 end return mind, minx, miny, mint end