
Tche - a visual Environment for the Lua language

André Filipe Lessa Carregal
Roberto Ierusalimschy

Departamento de Informática
PUC-Rio

Rua Marquês de São Vicente, 255
22453-900 Rio de Janeiro, RJ, Brasil

carregal, roberto@icad.puc-rio.br

Abstract: The Tche (Tiny Canvas-Hosted Environment) system is a visual environment that sup-
ports the direct manipulation of visual objects written in the Lua language. Tche was designed to be
simple, portable and flexible, being also highly user customizable. Tche uses a workspace where the
visual objects can be manipulated, modified and browsed. The system allows the use of text Lua
commands, offering real-time interactions not available in conventional systems. We introduce other
visual environments such as Visual Basic, ACE, Smalltalk, Oberon, SELF and Tcl/Tk, and briefly
discuss the solutions and characteristics of each system in the direct manipulation of visual objects,
ease of use and portability.

Keywords: Visual Programming, User Interface, Abstract Data Views, Active Objects, Visual Ob-
jects.

1. Introduction
The advent of new programming styles usually
brings up new software development tools. The need
to combine prototyping and rapid application devel-
opment, makes necessary the use of specific tools, to
achieve flexibility and ease of use. These tools nor-
mally use the concept of direct manipulation of ob-
jects. Those can be considered visual objects due to
the existence of a graphical representation corre-
sponding to each object.

Software tools with such characteristics are called
visual development environments. Some of these
tools allow visual objects to have their attributes and
behavior modified in run time (dynamic modifica-
tion). This feature enables the investigation of new
possibilities and combinations, stimulating an ex-
ploratory programming style.

This work describes the Tche (Tiny Canvas-Hosted
Environment) system. Tche is a visual development
environment that supports the direct manipulation of
visual objects described in Lua. Lua [FIC94] is a
programming language with structured language
characteristics and object orientation, based in a
portable interpreted environment. Lua can be used as
a configuration language, using its data description

capabilities, as much as a programming language
embedded in a development system.

Tche is simple to use and requires few machine re-
sources and a little learning time. Nevertheless, the
system is also flexible enough to allow a high degree
of user configuration. The system also offers easy
portability, minimizing the utilization costs in het-
erogeneous environments.

In the next section we introduce some related visual
environments. Then we describe the Lua program-
ming language and the Tche System. Following this,
we conclude with some suggestions for future works.

2. Related work
This section introduces other visual environments
such as Visual Basic, ACE, Smalltalk, Oberon,
SELF and Tcl/Tk, and briefly discuss the solutions
and characteristics of each system in the direct ma-
nipulation of visual objects, ease of use and portabil-
ity.

The Visual Basic system[MS92] offers a visual de-
velopment and programming environment allowing
simple prototyping and complete program creation
using a Basic language variation. The program inter-
face creation is done with direct manipulation of in-
terface elements. Each element has a set of proper-

ties and a programmed behavior. The system can use
the built-in elements and/or C created elements. The
last ones allow different functionalities and features
to be added to the system.

Visual Basic offers no run time object direct manipu-
lation, unless the developer explicitly implements
this feature in Basic code. Although Visual Basic
builds stand-alone executable application, those are
not portable running only in the Microsoft Windows
plataform.

The ACE (Application Construction Environment)
system [JNZM93] uses the composition of high-level
semantic components to develop applications. The
ACE system uses a high-level component manipula-
tion language based on the spreadsheet formula
definition. The language is used to configure and
modify the application components. In traditional
systems the programmer uses low-level abstraction
resources to specify what the application does and
how it interacts with the user. In opposition to this, a
spreadsheet offers functionalities and interface ele-
ments that are configured by the user to develop an
application.

Smalltalk [Gold84a] consists in an object-oriented
programming language and a group of integrated
tools that manipulates the various components of the
Smalltalk system. The system display is divided in
rectangular frames containing text and/or pictures.
Frames can be moved, resized, collapsed or removed.

Smalltalk uses the concept of image to store and re-
cover its configuration. The user can at any time
save the system image so the modifications become
part of the system. Smalltalk offers tools such as text
editors, class browsers and an interactive debugger.
The class browser allows the visualization and
modification of the system methods and attribute
definitions. New classes and methods can also be
added as needed.

Oberon [Wirt92] is derived from Modula-2 and was
created to develop operating systems. Oberon differs
from Modula-2 mainly by offering type extension
support, essential to the system expansion. The
Oberon environment offers advanced resources for
the editing and formatting of text and pictures. The
system is extremely economic under the perspective
of resource utilization. The display management is
based in frames, positioned by the system using
specific space-saving algorithms. The system uses
frame tiling instead of the more common overlap-
ping method. The system is available for many plat-

forms and porting Oberon programs is very easy, in-
volving only recompilation.

SELF [AB93] is an object oriented language, devel-
oped to facilitate the exploratory programming. The
language includes dynamic typing and garbage col-
lection. SELF does not use the concept of classes or
variables, adopting instead the prototyping of ob-
jects. The object attributes (slots) are accessed send-
ing messages to self.

The SELF environment has a high-level abstraction
of the system objects, allowing the direct manipula-
tion of object properties. The environment uses so-
phisticated interface methods, including cartoon
animation techniques. That sophistication, however,
makes SELF a resource-demanding system. Another
negative points are the lack of portability and the
deep dependence to the SUN platform.

Tcl (tool command language) [Oust94] is a script
language developed for application control and ex-
tension. Tcl uses a C library interpreter that can be
embedded in the application. The use of the same
language across a set of applications allows the ex-
change of scripts by the applications. This communi-
cation mechanism is more powerful and flexible than
static libraries solutions like Microsoft OLE and
SUN ToolTalk.

The Tk [Oust94] toolkit is a Tcl extension that of-
fers X11 user interface building commands. Tk al-
lows the creation of interfaces using Tcl scripts in-
stead of C code. The toolkit uses X11 to implement a
widget set based on the Motif look and feel. Each
widget belongs to a class that specifies the appear-
ance and behavior of the widget. The behavior is
determined by a Tcl script binded to the widget.

3. The Lua language
Lua [FIC94] is a dynamic typed extension language
with traditional structured and object-oriented char-
acteristics. Lua is implemented as a C library and
does not have the concept of a main program, being
used always within a host program. Lua reflexivity
mechanisms allow the creation of new code chunks
and the association of this code to the system, facili-
tating the implementation of persistent objects.

Before executing a piece of code, Lua compiles its
commands and functions and then executes the
commands sequentially. Functions are values in Lua
and can be stored in variables, used as parameters
and returned from other functions. The table type
implements associative arrays that can be indexed by

any value, being used not only as conventional ar-
rays but also as lists, symbol tables, records, etc.

The table constructor mechanism allows the imple-
mentation of very sophisticated data structures, pro-
moting the use of Lua as a powerful configuration
language. The table constructors can create empty
tables or tables with initialized values. Constructors
can call a Lua function, a feature that can be used to
many purposes, such as defining default values for
the created table.

Lua has a powerful semantic extension mechanism
called fallbacks. This mehanism allows a program-
mer to define functions to be called when Lua does
not know how to handle an error situation. A com-
mon use for fallbacks is the implementation of an
inheritance mechanism. More details about the lan-
guage and its API, including code examples and the
integration of Lua and C can be found in the lan-
guage reference manual [IFC95].

4. The Tche System
The Tche (Tiny Canvas-Hosted Environment) sys-
tem [Carr95] is a visual environment that supports
the direct manipulation of visual objects written in
the Lua language. Tche was designed to be simple,
portable and flexible, being also highly user custom-
izable. Tche uses a workspace where the visual ob-
jects can be manipulated, modified and browsed. The
system allows the use of text Lua commands, offer-
ing real-time interactions not available in conven-
tional systems.

The acronym choice intends to convey the philoso-
phy of an economic system easily portable to most
graphic platforms. Tche uses some concepts of the
systems presented before, including some ideas not
present in these systems.

Being an event-driven environment, Tche does not
have a main program. Instead, the system consists of
different objects that interacts with themselves and
with the user. Like some similar systems, Tche can
use timers to generate events in regular time inter-
vals. The Tche event handling architecture permits
the creation of new event types and the association of
these to the system. As an example of this mecha-
nism, events can be added to the system using RPC
(Remote Procedure Calls), allowing the remote sys-
tem manipulation.

As Smalltalk, Tche uses a system image concept to
store the visual objects state. However, Smalltalk
uses a complete system state recording. Instead of

this, the Tche system image consists of a Lua text
file describing the system objects. Using a configu-
ration file like this allows the transport of Tche ap-
plications within different platforms, helping the in-
terface and prototype development.

Tche can be used in three levels: in the top level,
application users operate the system through its in-
terface; in a middle level, Lua developers modify the
system using Lua code; and in the lower level, C
programmers add new capabilities, such as events, to
the system.

From the application user perspective, the Tche en-
vironment is composed by a command window and
one or more canvas, where visual objects are placed.
The command window allows the typing of any Lua
command to be executed. The user can also activate
browsers to navigate and modify the visual objects
attributes (Figure 1). The browsers let the user edit
simple attributes and activate new browsers to access
table type fields. Simple attributes (numbers and
strings) can be modified right into the browser,
while table and function attributes are just high-
lighted indications.

Tche uses some SELF concepts to show visual ob-
jects. Objects are solid and move like filled blocks,
instead of border frames. The appearance of new
objects in the screen, including menus, uses anima-
tion techniques to simulate the breeding of the ob-
ject. The simple techniques used show that, the
seemingly little efforts in the interface interaction
and visualization, make a real difference in the sys-
tem user feedback.

Unlike most of the other systems, Tche does not
force an object to be positioned in front of the oth-
ers while moving. A moving object keeps its relative
position, passing over objects that are in lower posi-
tions and under superior ones. To enhance the
movement illusion the system uses a double buffer-
ing technique like the Tk toolkit [Oust94]. Notice
that this moving metaphor needs fast bit map opera-
tions (BitBlt) to run smoothly.

To a Lua developer the Tche system offers a hierar-
chy of objects defined as Lua tables. Each object has
attributes that can be simple values, tables or func-
tions. The use of functions as table attributes can be
interpreted as an association of methods to objects.
The system hierarchy offers objects corresponding to
windows, lists, timers and the visual object manipu-
lation subsystem.

Figure 1 - Visual objects, menus and browsers

Tche uses an inheritance mechanism to allow an
object to access attributes of hierarchically higher
objects. If an object does not have a certain attribute,
the system use an attribute named parent or godpar-
ent1 continue recursively the search. This mecha-
nism permits the use of multiple inheritance in the
hierarchy.

Tche uses prototyping to create new objects. A proto-
type is a Lua object with attributes to be used by its
heirs. An heir is a Lua object which parent or god-
parent attributes are references to the prototype or to
an heir of the prototype. Methods and attributes de-
fined for a prototype can be redefined in its heirs,
without changing the prototype original values. This
mechanism is also used in SELF and parallels the
traditional class-based inheritance definition.

Each visual object has a set of associated methods
named callbacks. Each callback is triggered by the
system when events occur over the object. This
works like the binding of Tcl/Tk widgets, allowing
the redefinition of the object behavior through the
modification of the corresponding callback. Tche
defines callbacks for mouse movements, keyboard

1 the name godparent comes from the idea of
“parent substitute”.

events and for changes in the canvas size and posi-
tion.

The use of Lua allows the modification of the system
at any time. The user can redefine functions in run
time and assign these functions to an object attribute
or callback. The modification of Lua code can be
done in the command window or with the help of an
external editor.

The handling of the visual objects and their call-
backs is done through the UAI framework. UAI
[BCCI94] is a C++ class framework that allows the
development of graphic-interactive programs with
visual objects support. UAI offers graphics opera-
tions and a group of classes responsible for the ma-
nipulation of visual objects (VO). The Tche system
uses a Lua implementation of the UAI framework.
However, instead of using a class hierarchy, Tche
implements UAI as a group of prototypes corre-
sponding to the original C++ classes. This does not
differ from the UAI defined concepts.

The VO concept in UAI corresponds to Abstract
Data Views [CILS93], modeling active objects. Ac-
tive objects have a behavior determined by their
classes, reacting to events triggered by user interac-
tion or by other objects. Besides handling events, ac-

tive objects can show themselves in the screen using
a drawing method.

To the UAI/Lua framework a pen is any object that
offers drawing methods. It is possible, thus, to create
a virtual pen, that draws directly in memory, not in
the screen. A virtual pen simplifies the use of trans-
parent double buffering techniques to draw the VOs.
A VO does not need to know where it is drawing it-
self, only how it should draw itself. The system
handles every needed optimization and animation.

Tche allows the creation of visual objects that heir to
sophisticated prototypes. Some prototype examples
are the draggable and rectangular filled objects. A
draggable object can be moved through the canvas
with the use of drag and drop operations. Rectangu-
lar filled objects can have its bitmap stored in mem-
ory to speed up the redrawing process when moving
across the screen. Although seemingly simple, this
optimization benefits most of the traditional inter-
face elements.

To store a system image, Tche uses the Lua reflexiv-
ity to describe the data structures corresponding to
the system objects. In the rectangular VOs
(YRectangle), the object image is the direct descrip-
tion of the rectangle attributes. The Tche image file
consists in a series of object constructors. To restore
the system image, Tche uses Lua to open, compile
and execute this file. The constructor used for the
image file is the same one that the user can call to
insert a new VO in the system using the command
window.

As an example of the image file format, to save the
image of a system as the one presented in Figure 2,
Tche creates an image file with a format similar to
the show in Figure 3.

Figure 2 - Tche example

Finally, from a lower level perspective, instead of
making use of a traditional language (C or C++), we
decided to use Lua as the main language, and C as
the language for the system kernel. Lua is inter-
preted and easily portable, conferring every flexibil-
ity needed. The choice of C over C++ was due to the
higher portability achieved with C.

RectangleVO {
left = 58,
top = 29,
width = 80,
height = 40,
foreground = 'magenta',
name = 'vo1'

}

CrossVO {
left = 32,
top = 46,
width = 70,
height = 80,
foreground = 'cyan',
name = 'vo2'

}

Figure 3 - Image file example

Like Oberon, Tche uses simple graphical primitives
to draw and show text. The straightforwardness of
this set of primitives simplifies its implementation
and, therefore, the system porting. The higher level
operations are coded in Lua, granting to any plat-
form that implements the primitives, the full system
potential. Notice that Lua is interpreted but does not
impose any performance penalty on the Tche system.
The system performance is directly bound to the tar-
get machine graphics capabilities.

5. Conclusions
This work introduce the Tche system and some re-
lated visual environments such as Visual Basic,
ACE, Smalltalk, Oberon, SELF and Tcl/Tk. These
environments contributed in differents ways to the
Tche system.

Visual Basic showed up as a very sophisticated de-
velopment environment, but did not offer some
needed features as the dynamic code manipulation
and code portability.

The ACE system contributed with the concept of

using a common language to define the behavior and
attributes of objects. ACE presented, however, a in-
herent structural complexity.

Smalltalk was an excellent example of the utilization
of browsers, exhibiting, however, problems of consis-
tency and portability due to the different versions of
the system.

Oberon showed us that a system could be based in
simple basic principles and graphic primitives and
still keep up with the performance needs.

SELF contributed with fundamental concepts to the
Tche system. Some examples are: the concept of
prototyping instead of class-based instantiation of
objects, the linked objects hierarchy and, last but not
least, the use of animation techniques and object so-
lidity to enhance the user interactive feedback. The
sophistication of the SELF system, although, re-
vealed too much for the intended purposes.

As the last system analyzed, Tcl/Tk demonstrated an
excellent integration of an embedded language and a
visual objects toolkit. The concept of binding in
Tcl/Tk is also very similar to the callback mecha-
nism used in Tche.

Besides offering the concepts shared with these sys-
tems, Tche added some other notions and capabili-
ties. The event-driven architecture empowers the
creation and aggregation of new dispatchers to the
system. As an example, during the development of
the Tche system, a related project implemented ex-
ternal events. These events are triggered and ma-
nipulated using encapsulated RPCs (Remote Proce-
dure Calls), allowing the remote manipulation of the
Tche system.

Tche fulfilled its proposed purposes, demonstrating
the Lua potential to implement complete systems.
From a performance perspective, Tche testified that
Lua is up to the task. The system performance is
much more tightly linked to the graphical processing
capabilities (mainly BitBlt operations) of the target-
platform.

Following the development of the Tche system, some
possible additions become attainable. One of them is
the utilization of function persistence. Persistent
functions can be modified in run time and included
in the system image, being stored and recovered with
the objects. From a manipulation perspective, an-
other addition is the possibility to group objects, al-
lowing composition of simple objects in more com-
plex ones. The connector concept is also a very im-
portant addition to the system. With connectors the

user would be able to bind semantic relationships to
links between objects, a concept similar to the used
by constraint programming systems.

6. References
[AB93] Agesen, O.; Bak, A. The SELF 3.0 Pro-

grammer’s Reference Manual. Sun Microsys-
tems, 1993.

[BCCI94] Borges, R.; Cassino, C.; Cerqueira, R.;
Ierusalimschy, R. UAI - Um framework para
suporte a Objetos Visuais. In VIII Simpósio
Brasileiro de Engenharia de Software, 1994.

[Carr95] Carregal, A. Tche: Um ambiente visual
Lua. PUC-Rio, Departamento de informática.
1995. (Dissertação de mestrado), 67 p.

[CILS93] Cowan, D. D.; Ierusalimschy, R.; Lucena,
C. J. P.; Stepien, T. M. Abstract Data Views.
Structured Programming 14(1), January 1993, p.
1-13.

[FIC94] Figueiredo, L. H.; Ierusalimschy, R.; Celes
F., W. The Design and Implementation of a Lan-
guage for Extending Applications. In XXI Sem-
ish, 1994, p. 273-284.

[Gold84a] Goldberg, A. Smalltalk - The Interactive
Programming Environment. Addison-Wesley,
1984. 516 p.

[IFC95] Ierusalimschy, R.; Figueiredo, L. H.; Celes
F., W. Reference Manual of the Programming
Language Lua version 2.1. PUC-Rio, 1995. 24 p.

[JNZM93] Johnson, J. A.; Nardi, B. A.; Zarmer, C.;
Miller, J. R. ACE: Building Interactive Graphical
Applications. Communications of the ACM
36(4), April 1993. p. 41-54.

[MS92] Visual Basic Programmer’s Guide. Micro-
soft, 1992.

[Oust94] Ousterhout, J. K. Tcl and the Tk Toolkit.
Addison-Wesley, 1994. 458 p.

[Wirt92] Wirth, N.; Gutknecht, J. Project Oberon -
The Design of an Operating System and Com-
piler. Addison-Wesley, 1992. 547 p.

