

confidential © WM_PLC_F039 Level001 Page : 1 / 3

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

OPEN AT® DYNAMIC PROGRAMMING

WITH LUA

REFERENCE MANUAL

 ErreurErreurErreurErreur ! Source du renvoi introuvable.! Source du renvoi introuvable.! Source du renvoi introuvable.! Source du renvoi introuvable.
20th February 2007

confidential © LUA on WMP reference manual Page : 2 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

1 Introduction... 5

1.1 WIP Lua: a dynamic language on an embedded platform5

1.2 Applications ..6

1.3 Learning Lua ...6
1.3.1 Resources..6
1.3.2 Minimal knowledge ...7

1.4 Going further...8

1.5 Manual organization ...9

2 Getting started .. 9

3 Lua API... 12

3.1 Limitations of Lua features ..12

3.2 Scheduling ..13

3.3 WIP ...20
3.3.1 bearers ..20
3.3.2 channels..23
3.3.3 tcp...28
3.3.4 udp..29
3.3.5 ping...30
3.3.6 fcm..30

3.4 Flash objects ...30

3.5 at ..31

3.6 sms...34

3.7 shell ..35

3.8 proc...37

3.9 misc ..37

4 C API .. 39

4.1 Lua state handling...39

4.2 WIP interface from C ...41

4.3 Optimized memory pools...43

5 Samples showcase... 44

5.1 HTTP server ..44

5.2 FTP server ...44

5.3 XML encoder and decoder...44

5.4 Multi-protocol application..44

 ErreurErreurErreurErreur ! Source du renvoi introuvable.! Source du renvoi introuvable.! Source du renvoi introuvable.! Source du renvoi introuvable.
20th February 2007

confidential © LUA on WMP reference manual Page : 3 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

6 Other tools... 45

6.1 off-line compilation..45

Appendix: Setting up Windows for TCP/IP over PPP Client 47

6.2 Configure the serial port ..47

6.3 Add the devkit as a modem...48

6.4 Create the connection..50

7 Appendix: anatomy of a Lua application.................................... 53

confidential © LUA on WMP reference manual Page : 4 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

Document Information

LevelLevelLevelLevel DateDateDateDate History of the evolutionHistory of the evolutionHistory of the evolutionHistory of the evolution WriterWriterWriterWriter

001 27/08/2007 Creation FFT(Fabien Fleutot)

confidential © LUA on WMP reference manual Page : 5 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

1 Introduction

1.1 WIP Lua: a dynamic language on an embedded platform

This library offers you the ability to program your wireless CPU in an arbitrary
mix of C and of the dynamic language Lua. The Lua port is not merely a toy to
write simplistic programs that would fit on a cheap microcontroller; it features,
among others:

• a carefully designed API, including complete bindings to AT, ADL Open AT
and WIP (TCP/IP) features,

• multithreading (dynamically created tasks, in arbitrary numbers),
• synchronization on ADL, WIP, AT, Lua and user-defined events,
• automatic garbage collection,
• object-oriented programming,
• runtime (and optionally over the air) diagnostic, debugging and inspection,
• advanced strings and data structures handling,
• easy integration with your C code…

The kind of Lua samples provided (multithreaded FTP and HTTP+Ajax servers in
a couple hundreds of lines each, advanced data monitoring and reporting, etc.)
clearly demonstrates how empowering Lua is for wireless CPU programming.

The approach adopted is not to replace C: C is here to stay in embedded
software, as soon as you need realtime performances or a tight control of your
resources; so the right approach is to provide a high-level language, which does
well everything that would be tedious in C, and interfaces seamlessly with C for
those domains where C shines. That way, you use the right tool for the right job,
rather than a single tool which makes everything almost possible but quite
cumbersome.

However, by using Lua, you’ll probably find yourself writing 95% of your code in
Lua, and the remaining 5% in C.

Finally, Lua for wireless CPUs intends not only to let you write more powerful
programs, but to streamline the whole development cycle. Development is
accelerated:

• By the availability of an interactive shell, over telnet or UARTs, which lets
you examine/extend/modify your programs and your data, possibly while
they’re running.

• By automation and standard protocols support (everything over TCP/IP,
sources fetched through FTP and compiled automatically in a matter of
seconds, telnet that goes over all bearers including GPRS).

• By live and remote introspection capabilities. Eventually, this experience
will be further simplified by a closer integration with Eclipse (think remote
debugging over GPRS, for instance).

• By maximizing the flexibility of code: code can be easily downloaded from
the network, incorporated in a C application, stored/updated/retrieved/
deleted in/from flash objects.

confidential © LUA on WMP reference manual Page : 6 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

1.2 Applications

Besides the dramatic productivity boost, due to the language features and the
simplified development cycle, embedding the Lua VM and compiler in your
application enables many interesting capabilities:

• Remote diagnostic and troubleshooting, if the shell is enabled. Beware
that this might require some additional security measures when not
working in a private APN/network.

• Improved remote device management: Lua functions can be updated one-
by-one, on the fly, without rebooting. Modifications can be freely and
safely tested in RAM before being committed to flash with a simple call to
save() . Even Lua functions hard-coded in the C application can be
overridden by an additional function modification in a flash object. Thus
you get the best fine-grain control, network bandwidth economy and
upgrade safety you could dream of. With Lua running on servers as well
as terminal devices, you get an homogeneous environment in which
developing complex, distributed applications.

• Improved configurability. Configuration settings easily consist of arbitrarily
complex tables, with optional and default values, dynamically resizable
tables, etc.: these are possible to do in C, but at prohibitive development
cost, and thus rarely implemented in practice. More dramatically,
configurations can easily embed arbitrary functions, e.g. to specify a
reporting policy, a “door-knocking” authentication policy, etc.

1.3 Learning Lua

One of Lua’s distinguishing features is its ease of learning. You’ll master its
mainstream features in an hour if you know a dynamic language such as Perl,
Python, Ruby, PHP or Javascript, and coming from a pure Java or C background
should take you only marginally longer. If you’re interested by advanced
programming techniques (function closures, coroutines, meta object protocol,
weak referencing, code reification…), they are provided by Lua, and you can
learn and use them although you don’t have to.

1.3.1 Resources

Learning Lua is easy, and many resources exist online and offline.

• The best resource is probably Roberto Ierusalismschy’s “Programming in
Lua”1.

Online resources include:

1 “Programming in Lua, 2nd edition”
Published by Lua.org, March 2006
ISBN 85-903798-2-5 Paperback, 328 pages, 1.8 x 24.6 x 18.9cm
Distributed by Ingram and Baker & Taylor.
Also available in German and in Korean.

confidential © LUA on WMP reference manual Page : 7 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

• The first edition of “Programming in Lua” is freely available online:
http://www.lua.org/pil

• The reference manual: http://www.lua.org/manual/5.1
• At-a-glance cheat sheets of the language syntax, features and standard

libraries: http://lua-users.org/wiki/LuaShortReference
• A very active user community: http://lua-users.org/wiki. Check their

comprehensive list of tutorials and sample code.
• The users’ mailing list: http://www.lua.org/lua-l.html,

and the IRC channel #lua on irc.freenode.net

TestimonialsTestimonialsTestimonialsTestimonials

If you would like a bit of advocacy, you can have a look at:

• User feedbacks: http://www.lua.org/quotes.html
• A list of projects which advertize their use of Lua: http://www.lua.org/uses.html
• Mark Hamburg’s feedback on writing a big application in Lua: Adobe

Photoshop Lightroom, written 40% in Lua, 60% in C and C++. Interview
here: http://since1968.com/article/190/mark-hamburg-interview-adobe-photoshop-

lightroom-part-2-of-2. Insightful presentation slides at
http://www.lua.org/wshop05/Hamburg.pdf.

1.3.2 Minimal knowledge

To write an application in Lua, the minimum you need to know is listed below.

• syntax of control structures: for loops, do/while, repeat/until, if/then/else,
function declaration. All these constructions’ syntax and semantics are
perfectly straightforward, and similar to those found in all procedural
languages. They’re all summed up in a single page of the short reference
referenced above.

• Variable assignments, global and local variable declarations: a variable
declared as local only exists wihtin the structure where it’s declared; non
declared variables are global by default. Optionnally, global variables
declaration might be made mandatory, which helps detect some bugs.
There is no type declarations, as values are typed dynamically; runtime
type-checking is however available, to make your APIs safer.

• Data: simple types include booleans, numbers, strings, functions, threads,
userdata (i.e. C data reified in Lua, e.g. WIP channels and bearers).
Composite data rely on the amazingly simple yet powerful table datatype,
which can be used as a list, a queue, a FIFO, a record (i.e. a C “struct”),
an object, a hashtable... Tables will effectively address all the needs you
might have for advanced data structures.
It should also be noted that:

o strings are pooled: there always exists a single memory copy of a
given string. This means that equality test for strings is as cheap as
a pointer comparison. The counterpart is that strings are
unmutable: instead of modifying a string, the system creates
modified copies of it. To avoid impacting the performances in time

confidential © LUA on WMP reference manual Page : 8 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

and memory, OpenAT data streams are therefore represented by
dedicated buffers data structures (themselves implemented with
tables), and are only converted to strings on demand.

o Functions are first order values: this means that everything you
could do with a string or an number, you can also do it with a
function: passing it as a parameter, creating it and returning it as a
result, putting it in global or local variables, storing it in flash, in
tables, as a C constant, send it through the network...

o Numbers in OpenAT Lua are integers: for the sake of simplicity, Lua
works with a single number type, and working with floats is not a
good idea when you don’t have an FPU2. You can still reintroduce
IEEE floats as if you need them.

• Knowing the main APIs which control OpenAT through Lua: Access to
task scheduling, flash, TCP/IP channels, V24 channels, GPIO, AT
commands...

• Interfacing C and Lua. Lua and C user code communicate through a
pseudo-stack API: from C, you can push and pop values from the stack,
with function such as lua_pushinteger(L, number) or lua_tostring(L,
stack_idx) . From Lua, you can call any C function which takes parameters
from a stack and pushes back results on it. Most lua primitive operations
are also accessible from C through an extensive dedicated API (although
it’s often best to do everything you can in Lua).
The C functions you’ll be most interested with are those which translate
data between Lua and C. Lua�C translation functions are generally called
luaL_checkxxx(L, idx) ; C�Lua ones are called lua_toxxx(L, x) ; keep a
bookmark on them in the reference manual.

1.4 Going further

If you want to go further, either out of curiosity or because your application is
complex enough to leverage advanced programming technics, you might wish
to study the following advanced subject:

• Coroutines: the collaborative threading system of Lua. Our platform gives
you an easy to use interface which will cater for most of your needs, but
you can do even more with the raw coroutines.

• Metatables: you can completely bypass Lua’s mechanism from within
Lua. We use this, for instance, to implement the “magic” flash table,
which saves its content automatically in flash, yet is handled like a regular
table by the user. It also easily allows object oriented programming,
creation of advanced user types, personalized printing functions...

2 Many portages of Lua, at least on PC, work exclusively with IEEE double floats.

confidential © LUA on WMP reference manual Page : 9 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

• Full function closures: being able to declare local functions, which capture
all of the local variables accessible at their declaration point, open a lot of
possibilities, only accessible to very high level languages.

• Strings pattern matching (a.k.a. regular expressions) will save you a lot of
time when parsing typical ASCII-based network protocols.

• Interactive debugging: the standard debug library has amazing
capabilities for inspecting the stacks, the memory, and monitoring the
virtual machine, far beyond any static language and most dynamic ones.
It is quite an astonishing diagnostic tool, including for maintenance of
already deployed modules.

1.5 Manual organization

This reference manual is organized as follows:

• Getting started: how to setup your computer for development.

• Lua API: all the functions and modules available from Lua to drive the
WMP. This API only defines in what way Lua on WMP differs from the
original Lua distribution, it doesn’t substitute itself to the official manual.

• C API: as for Lua API, it doesn’t substitute itself to the official manual. It
mainly describes interfacing with an ADL application/library, and
optimized memory management.

• Application samples: some demonstrations of what can be easily achieved
on Wavecom hardware with Lua.

2 Getting started

We assume that WIP Lua is running on your devkit, and that a PPP connection is
established between the computer and the devkit. For details about setting up a
PPP client on serial port under Microsoft Windows XP, see in appendix.

Required toolsRequired toolsRequired toolsRequired tools

WIP Lua only relies on standard tools: you’ll need an FTP server (filezilla server,
WFTPD, proftp…) accepting anonymous downloads, and a Telnet client (under
MS-Windows, we strongly recommend Putty, which can be downloaded at
http://www.chiark.greenend.org.uk/~sgtatham/putty/). Finally, you’ll need a text
editor. Although Notepad would theoretically be enough, we advise you to
choose a decent one, that supports at least syntax highlight for Lua: all major
editors (Eclipse, Emacs, UltraEdit, TextMate…) do, possibly through a plug-in.
There is also a wealth of specialized Lua editors, which can be found in
http://lua-users.org/wiki/LuaAddons, under the section “Development
environments”.

confidential © LUA on WMP reference manual Page : 10 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

First contactFirst contactFirst contactFirst contact

You can check that the devkit is properly connected by pinging it. From now
we’ll assume that the devkit is at address 192.168.1.4, and the PC at
192.168.1.5: this is the default config of the sample. If it doesn’t suit you, you
can change it by typing the following AT commands:

AT+LUA=”LOCAL_ADDR=’192.168.131.1’; save ‘LOCAL_ADD R’”

OK

AT+LUA=”PEER_ADDR=’192.168.131.2’; save ‘PEER_ADDR’ ”

OK

Interactive ShellInteractive ShellInteractive ShellInteractive Shell Now, connect with Putty to your devkit:

Lua interactive shell
$ _

InteInteInteInteractive commandsractive commandsractive commandsractive commands You can type your first program:

$ print “Hello world”
Hello world
$ _

Live inspection/updateLive inspection/updateLive inspection/updateLive inspection/update You can inspect and change your system’s settings:

$ = proc.channels
= {
 [403572792] = [channel TCPSERVER 0x180e0838 ready],
 [403503416] = [channel TCPCLIENT 0x180cf938 ready] }
$ sh_chan = proc.channels[403503416] -- this is the socket serving the telnet shell
$ = sh_chan.ttl
= 64
$ sh_chan.ttl=255 -- change the socket’s Time-To-Live on the fly
$ = sh_chan.ttl
= 255 -- value changed dynamically!
$ _

confidential © LUA on WMP reference manual Page : 11 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

Download & run from FTPDownload & run from FTPDownload & run from FTPDownload & run from FTP Finally, you can run programs. Suppose that your
FTP server contains the following program in its anonymous root directory:

-- File ‘first_program.lua’
for i=1,5 do
 print (“three times”, i, “=”, 3*i)
end

To download, compile and run it, simply type in the shell:

$ l ’first_program’
Loading first_program.lua
Loaded. Eval...
three times 1 = 3
three times 2 = 6
three times 3 = 9
three times 4 = 12
three times 5 = 15
Done. Lua VM uses 63330 bytes.
$ _

If you want to modify it, edit the file, save it, and reload with l() . Notice that l()
remembers its last argument even across reboots, so you can reboot your devkit
between two runs if you wish:

$ l() -- In the file first_program.lua, we’ve changed “fo r i=1,5” into “for i=1,3”
Loading first_program.lua
Loaded. Eval...
three times 1 = 3
three times 2 = 6
three times 3 = 9
Done. Lua VM uses 63450 bytes.
$ _

confidential © LUA on WMP reference manual Page : 12 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

3 Lua API

3.1 Limitations of Lua features

In order to make Lua run on Wavecom’s platform, we had to put a couple of
limitations on the implementation:

• No floating point numbers: Lua works with a single number type, which
by default is the IEEE double float. Due to the kind of applications typically
developed on WMP, and the absence of an FPU, we chose the integral
variant of Lua compiler and virtual machine, which use 32 bits signed
integers as numbers.

• Some default libraries aren’t available: math (relies on floats), io (requires a
filesystem), OS (requires an underlying POSIX OS). The base functions
loadfile() and dofile() are also currently disabled, due to lack of a
filesystem.

• Coroutines (a.k.a. green threads) are used to implement multitasking;
using raw coroutines is therefore tricky, and requires special care, to avoid
crashing the scheduler. A section will be dedicated to the subject.
Anyway, many realistic use cases for raw coroutines are superseded by
the scheduling and signalling API.

All other standard libraries, base functions and features are fully supported.

confidential © LUA on WMP reference manual Page : 13 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

3.2 Scheduling

Lua port on WCPU has its own collaborative multitasking system, which runs in
a single OS task. Tasks are created and destroyed dynamically, limited in
number only by available memory (about 1.5KB RAM per thread). Functions
run(), signal() and wait() are at the core of multitasking in Lua.

All Lua collaborative threads run in a single user ADL OS task. They give back
the hand either by calling wait() , but some other functions might cause the
hand to be given back as well (most probably by calling wait() in their
implementation). These functions are marked with a ASYNC label in the manual.

A remark reserved to expert Lua programmers: you should be warned that the
system makes heavy use of Lua coroutines: be careful if you must use
coroutines on your own, all functions marked with ASYNC might cause a
coroutine.yield() . Take this into account, and if you can (i.e. in most cases),
write your stuff in terms of synchronized tasks rather than coroutines.

confidential © LUA on WMP reference manual Page : 14 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

run(x [,args])

Schedule a task for running. x can be:

• a sleeping thread, which is then reactivated

• a function, which is turned into a thread and scheduled for running. If
some extra parameters are given, they are passed to f.

If a scheduler is already running, run() simply returns the thread created or
woken up. If no scheduler is running (which probably means that run() has been
launched from C, typically in an ADL/WIP callback), then the scheduler is woken
up until no thread can run anymore (all dead or waiting for a signal).

Beware that Lua’s multitasking is collaborative: it’s up to the tasks to give up the
hand, either by calling wait() or a blocking function (which in turns eventually
calls wait()). The advantages are economy of resources, and very limited risks of
race conditions and deadlocks; the corresponding drawbacks are that a single
task can freeze the whole Lua VM, and in some (pretty rare) cases, the user has
to think about explicitly giving back the hand to the scheduler, so that other
tasks have a chance to run.

FIXME the scheduler should be modified to yield regularly, to make sure the
watchdog isn’t triggered by expensive computations.

ExamplesExamplesExamplesExamples

Accumulate all lines received on a socket in the background (i.e. the shell
remains available, and other tasks can run concurrently as well)

accumulator = { }
function accumulate_from_socket (addr, port)
 local x = wip.tcp_client(addr, port)
 while true do
 local line = x:read “*l”
 table.insert (accumulator, line)
 end
end
run(accumulate_socket, 192.168.1.4, 2007)

You can check the accumulator’s content at any time, while filling goes on in the
background:

$ = accumulator
= { “foo\r\n”, “bar\r\n” }
$ = accumulator -- after having waited a while, and data arrived on the socket
= { “foo\r\n”, “bar\r\n”, “gnat\r\n” }
$ _

confidential © LUA on WMP reference manual Page : 15 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

signal(emitter, event [,args])

Signal event event on behalf of emitter . emitter can be any object, event must
be a string. If some extra args are given, they’re passed to the hooks and the
threads waiting for that signal.

Signals can be emitted from C. They are used to advertise AT, ADL and WIP
events to Lua, thus allowing to synchronize Lua application on relevant
hardware events, e.g. waiting for a channel to close, for an AT command to
terminate etc.

EEEExamplesxamplesxamplesxamples: This only makes sense with a task waiting for the event, or a callback
being attached to it. see wait().

confidential © LUA on WMP reference manual Page : 16 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

wait(emitters, events) ASYNC

wait(tenths_of_seconds)

wait()

Put the currently running thread to sleep until one of the objects in table emitters
receives one of the events in table events. In cases where only one emitter
and/or one event is to be waited for, it can be put out of tables, i.e.
wait(channel, “close”) is the same as wait({channel}, {“close”}) .

Return the emitter, the event, and any additional parameter associated to the
event by the signal() call.

Asleep tasks can be manually managed and killed from table proc.tasks.waiting .

When called without any argument, wait() simply puts back the current tasks at
the bottom of the list of schedulable tasks: when a tasks might keep the hand
for a long time, periodically calling wait() that way gives a chance to other tasks
to run as well, thus keeping a multithread feeling. In practice, however, many
functions such as TCP or AT ones implicitly give back the hand, when waiting of
ADL/WIP events: most reasonable applications tend to keep collaborative
multitasking running smoothly.

Moreover, wait() behaves in a special way if one of the events is a positive
number n rather than a string: it is a timer event that will happen n 10th of
seconds later (at least: we’re not realtime, remember): since wait() returns as
soon as one of the events happens, it will return after n 10th of seconds at the
latest. When wait() returns because of a timer, it returns an event of the form
“@xxx.d” where xxx is the epoch of the timer expiration (i.e. the date, as a
number of seconds since 1/1/1970 midnight), and d is a number of 10th of
seconds, added to the epoch’s number of seconds.

As a special case, if you only want to wait of a certain delay n (still in 10th of
seconds), you don’t have to precise an emitter at all: wait(n) will work.

ExamplesExamplesExamplesExamples

Write “plop ” on the console every 5 seconds, in a background tasks:

run (function () while true do print “plop”; wait(50) end end)

Read on a socket and write whatever is received to the console. If nothing is
received during a 30 second period, or a socket event occurs, or the peer socket
closes the connection, we stop and close the socket.

x=wip.tcp_client(PEER_ADDR, 2007)
while true do
 local em, ev = wait(x, {‘read’, ‘peer_close’, ‘error’, 3 00})
 assert(em==x)
 if ev ~= ’read’ then break end
 local msg = x:read()
 print(msg)
end
x:close()

confidential © LUA on WMP reference manual Page : 17 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

Let’s do it again, in a more contrived way: one task counter will emit signal
“foo”.”bar” every 5 seconds, and two other tasks writer1 and writer2 will write
“plic ” and “plop ” everytime it sees that signal “foo”.”bar” . Moreover, an
additional parameter i is associated to the event and passed to the PLIC and
PLOP generators:

function counter() -- generate “foo”.”bar” every 5 seconds for 5000 se conds
 for i = 1, 1000 do
 signal(“foo”, “bar”, i)
 wait(50)
 end
end

function writer1()
 while true do
 local emitter, event, i = wait(“foo”, “bar”)
 printf (“PLOP number %i”, i)
 end
end

function writer2()
 while true do
 local emitter, event, i = wait(“foo”, “bar”)
 printf (“PLIC number %i”, i)
 end
end

run(counter); run(writer1); run(writer2) -- run the 3 functions in parallel

confidential © LUA on WMP reference manual Page : 18 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

sighook(emitters, events, hook)

Attach a hook function to be triggered when one of events is signalled by one of
emitters . As with wait() , when a single emitter/event is monitored, it can stay
out of a table.

The function hook receives as parameters the emitter, the event and any extra
arguments passed to the signal() call which triggered it. If hook() returns false
or nil , it is detached from the event. If it returns anything else, it stays attached
and will be triggered again next time a suitable emitter/event pair is signalled.
It’s good practice, when a hook requests to stay attached, to make it return the
string “again” .

In an interactive shell, a practical way to kill a hook which never detaches itself
is to empty the suitable entry(ies) in proc.tasks.waiting . Such entries can be
recognized by the fact that they bear a hook field.

IMPORTANT WARNING:IMPORTANT WARNING:IMPORTANT WARNING:IMPORTANT WARNING: signal hooks are supposed to be short synchronous
reactions. They cannot run any asynchronous (blocking) function. If a function in
a signal tries to access to scheduling, it will fail. If you want to use an
asynchronous function in a signal hook, put it in a run(function()…end) call. In
that case, don’t expect the function inside run(…) to be executed synchronously.

ExampleExampleExampleExamplessss

Here is an idiomatic way to attach a callback to a channel which will, upon error
or shutdown, close it and set it to nil automatically:

c = wip.tcp_client(‘www.wavecom.com’, 80)
sighook(c, {‘error’,’peer_close’},
 function (emitter, event) c:close(); c=nil end)

This one will print a message every time the SIM rack is opened, by catching AT
events “+WIND: 14”

local function watch_rack(event, emitter, arg)
 if arg==’14’ then print ‘Rack opened!’ end
 return ‘again’ -- don’t detach the hook
end
sighook(‘at’,’WIND’,watch_rack)

confidential © LUA on WMP reference manual Page : 19 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

kill(task)

Kill a task, whether it’s waiting for an event or ready for scheduling. The
preferred way to get the task id is to gather it when it’s returned from the first
call to run() .

ExampleExampleExampleExample

In this shell session, we create a function that regularly prints a message in the
background, then stops it by killing the task.

$ task = run(function(x) while true do print 'plop! '; wait(20) end end)
$ plop!
plop!
plop!
plop!
kill(task)
$ _

Notice that a killed task still emits a “die” signal:

$ do
+ task = run(function(x) while true do print 'plo p!'; wait(20) end end)
+ sighook(task, “die”, function() print “AAaaaarg hHh!” end)
+ end
$ plop!
plop!
plop!
plop!
plop!
kill(task)
AAaaaarghHh!
$ _

confidential © LUA on WMP reference manual Page : 20 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

3.3 WIP

3.3.1 bearers

Bearers are started with wip.bearer_client() and wip.bearer_server() . These
function are synchronous: they only return when the bearer is up and running. If
you don’t want to wait for bearer establishement, use run() to put the bearer
config in a background task. Since some options need to be passed before the
connection is started, the constructors accept a table of options as a second
parameter. Once the bearer is ready, you can read and write the options as
regular fields (provided they’re readable/writable). In addition to usual options as
listed below, GSM/GPRS bearers accept a “pin” pseudo-option that lets you set
the PIN number during the config.

FIXMEFIXMEFIXMEFIXME: : : : GSM connection not tested.

wip.bearer_client(name, opts)

Create a bearer. The name has to be one of FIXMEFIXMEFIXMEFIXME. opts is an option_name �
option value association table: each of these options will be set before the bearer
is started. The list of available options is given below, and their detailed meaning
can be found in the WIP user’s guide.

‘GPRS’ bearer has, for convenience, an additional pseudo-option ‘pin’ : when
set, it enters the PIN code and waits for full SIM init before starting actual GPRS
bearer registration.

Once created, the bearers are registered in the table proc.bearers. They’re
referenced by name for easy user retrieval (e.g. the GPRS bearer, when running,
is always registered as proc.bearers.GPRS), and by numeric key for easy
programmatic retrieval.

ExamplesExamplesExamplesExamples

The following program will allow you to easily set the GPRS link up by calling
gprs() , and to tune the config options by modifying grps_config :

function gprs()
 wip.bearer_client(‘GPRS’, gprs_config)
end

gprs_config = { pin = 1234;
 apn = ’websfr’;
 login = ’foo’;
 password = ’bar’ }

save(‘gprs’, ‘gprs_config’) -- commit to flash

confidential © LUA on WMP reference manual Page : 21 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

wip.bearer_server(name, opts)

Works the same as wip.bearer_client() , except that the accepted names are
FIXMEFIXMEFIXMEFIXME.

BEARER:close()

Destroy the bearer, and dereferences it from proc.bearers .

Bearer optionsBearer optionsBearer optionsBearer options

Bearer options can be accessed as regular fields of a table. Here is the
correspondence between WIP options and their Lua counterpart:

WIP option nameWIP option nameWIP option nameWIP option name Lua field nameLua field nameLua field nameLua field name Lua typeLua typeLua typeLua type

WIP_BOPT_GPRS_APN apn or gprs_apn STRING

WIP_BOPT_GPRS_CID cid or gprs_cid NUMBER

WIP_BOPT_GPRS_DATACOMP datacomp or
gprs_datacomp

BOOL

WIP_BOPT_DIAL_MSNULLMODEM dial_msnullmodem BOOL

WIP_BOPT_DIAL_PHONENB dial_phonenb STRING

WIP_BOPT_DIAL_RINGCOUNT dial_ringcount NUMBER

WIP_BOPT_DIAL_SPEED dial_speed NUMBER

WIP_BOPT_ERROR error NUMBER

WIP_BOPT_GPRS_HEADERCOMP gprs_headercomp BOOL

WIP_BOPT_IP_ADDR ip_addr ADDR

WIP_BOPT_IP_DNS1 ip_dns1 ADDR

WIP_BOPT_IP_DNS2 ip_dns2 ADDR

WIP_BOPT_IP_DST_ADDR ip_dst_addr ADDR

WIP_BOPT_IP_GW ip_gw ADDR

WIP_BOPT_IP_NETMASK ip_netmask ADDR

WIP_BOPT_IP_SETDNS ip_setdns BOOL

WIP_BOPT_IP_SETGW ip_setgw BOOL

WIP_BOPT_LOGIN login STRING

WIP_BOPT_NAME name STRING

WIP_BOPT_PASSWORD password STRING

WIP_BOPT_PPP_CHAP ppp_chap BOOL

WIP_BOPT_PPP_ECHO ppp_echo BOOL

WIP_BOPT_PPP_MSCHAP1 ppp_mschap1 BOOL

confidential © LUA on WMP reference manual Page : 22 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

WIP_BOPT_PPP_MSCHAP2 ppp_mschap2 BOOL

WIP_BOPT_PPP_PAP ppp_pap BOOL

WIP_BOPT_RESTART restart BOOL

Fields marked as having type ADDR take a string representing a numerical IPv4
address, such as “192.168.1.4” .

All of these fields can be accessed by reading. For instance, if you want to know
the address associated with the bearer on UART2, you can type on the shell:

$ =proc.bearers.UART2.ip_addr
= “192.168.1.4”
$ _

Notice that most of these field must be set when the bearer is opened, i.e.
through the options argument of wip.bearer_client() or wip.bearer_server() .

confidential © LUA on WMP reference manual Page : 23 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

3.3.2 channels

• Channels share a common Object Oriented API: each kind of channel has
its own constructor, but once created, all are handled with the same
methods. Besides, options getting and setting are handled as regular
fields.

OptionsOptionsOptionsOptions

Options are reified as regular fields, which can be read e.g. with
myTcpSocket.port , and set with e.g. myTcpSocket.ttl=255 . The list of supported
options is given in the table below. The “Lua type” column indicates the kind of
data that can be read or written for these options:

• NUMBER: an integer number

• STRING: a string

• BOOL: any value. false and nil are interpreted as false, everything else as
true.

• ADDR: an IP address of the form “nnn.nnn.nnn.nnn” . You can’t provide
DNS-resolved address to these fields, but most of the time, to an xxx_addr
option corresponds an xxx_straddr option that accepts DNS-resolved
addresses.

WIP option nameWIP option nameWIP option nameWIP option name Lua field nameLua field nameLua field nameLua field name Lua typeLua typeLua typeLua type

WIP_COPT_ACCOUNT account STRING

WIP_COPT_ADDR addr ADDR

WIP_COPT_BOUND bound BOOL

WIP_COPT_CHECKSUM checksum BOOL

WIP_COPT_DONTFRAG dontfrag BOOL

WIP_COPT_ERROR error NUMBER

WIP_COPT_FILE_NAME file_name STRING

WIP_COPT_INTERVAL interval NUMBER

WIP_COPT_KEEPALIVE keepalive BOOL

WIP_COPT_NODELAY nodelay BOOL

WIP_COPT_NREAD nread NUMBER

WIP_COPT_NWRITE nwrite NUMBER

WIP_COPT_PASSIVE passive BOOL

WIP_COPT_PASSWORD password STRING

WIP_COPT_PEEK peek BOOL

confidential © LUA on WMP reference manual Page : 24 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

WIP_COPT_PEER_ADDR peer_addr ADDR

WIP_COPT_PEER_PORT peer_port NUMBER

WIP_COPT_PEER_STRADDR peer_straddr STRING

WIP_COPT_PORT port NUMBER

WIP_COPT_RCV_BUFSIZE rcv_bufsize NUMBER

WIP_COPT_RCV_LOWAT rcv_lowat NUMBER

WIP_COPT_RCV_TIMEOUT rcv_timeout NUMBER

WIP_COPT_REPEAT repeat NUMBER

WIP_COPT_RESET_CEV_READ reset_cev_read BOOL

WIP_COPT_RESET_CEV_WRITE reset_cev_write BOOL

WIP_COPT_SND_BUFSIZE snd_bufsize NUMBER

WIP_COPT_SND_LOWAT snd_lowat NUMBER

WIP_COPT_STRADDR straddr STRING

WIP_COPT_TOS tos NUMBER

WIP_COPT_TRUNCATE truncate BOOL

WIP_COPT_TTL ttl NUMBER

WIP_COPT_USER usre STRING

EventsEventsEventsEvents

channels can emit events “open ”, “read ”, “write ”, “peer_close ”, “error ”, “ping ”,
“done ”. However, most of time it isn’t required to deal with them: channel
creation functions generally wait for “open ” before returning, so that the channel
is operational at the next line of code; :read() and :write() methods
transparently put the current task to sleep and wake it up when required, so that
they can be used without having to deal with events.

For instance, you can create a TCP client channel then wait for it to emit “error”
or “peer_close ” with:

myTcpChannel = wip.tcp_client(SOME_SERVER_ADDRESS, 80)
wait(myTcpChannel, {“error”, “peer_close”})

confidential © LUA on WMP reference manual Page : 25 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

ExamplesExamplesExamplesExamples

Here is how to perform an HTTP query, directly and interactively, with a TCP
socket. You need a connection to internet, e.g. through GPRS.

$ x = wip.tcp_client ("www.google.com", 80) -- Establish connection
$ x:write "GET / HTTP/1.0\r\n\r\n" -- Send hand-made request
$ = x:read() -- Check response
= "HTTP/1.0 302 Found\r\n […] </HTML>\r\n"
$ x:close() -- Clean up

Similarly, here is how to perform a simple active FTP get: the content of file
data.txt is retrieved in variable data . Everything is hard-coded, and no error
handling is done. This is for illustration purpose only: if you want to actually
perform FTP transactions, use wip.ftp_client() !

x = wip.tcp_client ("192.168.1.5", 21) -- x :: control socket, see RFC959
y = nil -- y :: data communication socket
-- z :: data server socket. First connection socket is put in y,
-- then z is closed in the acceptation callback.
z = wip.tcp_server (1024, function (client) y=client; z:close() end)
z:wait "accept" -- wait for connection
x:write "USER anonymous\r\n"
x:write "PASS lua@wavecom.com\r\n"
x:write "PORT 192,168,1,4,4,0\r\n"
x:write "RETR data.txt\r\n"
data = y:read "*a" -- read everything on y until closed by peer
x:write "QUIT\r\n"
y:close(); x:close() -- clean up

loadchannel(channel) ASYNC

Read everything on a channel. If it’s Lua bytecode, undump it to return the
corresponding function. If it isn’t, consider it as source code, compile it, and
return the corresponding function.

This call is optimized w.r.t. memory: it destroys data while compiling it, thus
allowing compiling bigger chunks than a full reading as a single string, followed
by a single-pass compilation.

CHANNEL:read([x]) ASYNC

Read and return data, as a string, from CHANNEL. Its exact behavior depends on x:

• x==”*l”: read a line, terminated by regular expression wip.EOL_PATTERN (by
default, “\n ”) or by the peer closing of the channel; might block the
current thread and wait for more data if required.

• x==”*a”: read the whole channel, i.e. returns all data at once when the

channel is remotely closed. Block the current thread if necessary. In most
cases you should prefer “*ab ” (cf. below).

• x==”b”: return all currently bufferized data, as a buffer, i.e. an array of

strings. Buffers are preferable to strings for long pieces of data (more than

confidential © LUA on WMP reference manual Page : 26 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

a couple KB), as they don’t stress the memory allocator by requesting
huge, single-piece chunks of heap memory.

• x==”*lb”: read a line, blocking the thread if necessary, and returns it as a

buffer (array of short strings, cf. above)

• x==”*ab”: blockingly read all of the channel, as “*a ” does, but returns is as
a buffer rather than a single string.

• x==<nothing>: returns whathever data is currently available, without

blocking, as a single string.

• x == <number>: if x is a number, read x bytes of data, if necessary
blockingly.

CHANNEL:write(…) ASYNC

write all its arguments, blocking the thread if required by a full internal buffer.
Arguments can be strings or numbers (which are then transformed into strings).
It is also acceptable to give a single buffer (array of strings, as returned by some
:read() calls) as an argument.

CHANNEL:get(filename) ASYNC

Wrapping around wip_getFile() : applied on a filesystem channel, returns a file
download channel.

CHANNEL:put(filename) ASYNC

Wrapping around wip_putFile() : applied on a filesystem channel, returns a file
upload channel.

CHANNEL:shutdown(x, [‘read’], [‘write’])

Shutdowns a channel in read and/or write direction(s).

CHANNEL:load() ASYNC

Equivalent to loadchannel(CHANNEL)

CHANNEL:wait(events) ASYNC

Equivalent to wait({CHANNEL}, events)

CHANNEL:hook(events, hook [,args])

Equivalent to sighook({CHANNEL}, events, hook, args)

confidential © LUA on WMP reference manual Page : 27 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

CHANNEL:state()

Return the channel’s state.

CHANNEL:close()

Close and release the channel. Think also about nil ing all variables referring to
that channel, so that it can be garbage collected:

x:close(); x=nil

A Very common idiom for closing a channel is to do this in a signal hook.
Channel handling happens in an infinite loop in a separate thread, and doesn’t
take care of errors nor peer shutdowns. When an error or shutdown is caught by
the signal, the channel is closed, and the handling thread (presumably blocked
on a :read() or a :write()) is killed by the induced error (a read/write causes an
error when the channel is closed).

local channel = ...
channel:hook(function () channel:close(); channel=nil end)
run(function ()
 while true do
 do_stuff_with (channel)
 end
 end)

confidential © LUA on WMP reference manual Page : 28 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

3.3.3 tcp

wip.tcp_client(host, port [,opts]) ASYNC

Create a TCP client channel connected to host (address given as a string) on port
port . opts is a table associating option names to option values; these option
pairs will be passed to the internal wip_tcpClientCreateOpts() call.

This function blocks until the connection succeeds or fails (event WIP_CEV_OPEN or
WIP_CEV_ERROR), so that the resulting channel is immediately usable.

FIXMEFIXMEFIXMEFIXME: handling of opts by constructor not implemented yet.

wip.tcp_server(port, [accept_function])

Create a TCP server listening on local port port . If a function accept_function is
provided, it will be used to create a new thread every time a connection request
is accepted by the server. In this thread, accept_function will receive as
arguments the newly created communication channel, and the server channels
which accepted the connection.

This makes handling of multiple connections by TCP servers fully automatic. An
idiom to accept only one client and write the code linearly is:

local client
wip.tcp_server(123, function (c,s) s:close(); client=c end):wait “accept”
-- ‘server’ is closed and ‘client’ contains the onl y accepted connection.
-- From here, use ‘client’ as you wish.

Examples

This program diverts debug traces to every sockets which connect to port 2007,
by:

• creating a list of subscribed sockets called log_sockets

• every time a new socket is accept it, insert it into log_sockets

• replace trace() by a function which writes to all working sockets in
log_sockets .

log_sockets = { }
wip.tcp_server(2007, function (c) table.insert(log_sockets, c) end)

function trace(...)
 for _, c in ipairs(log_sockets) do
 if c:state()=="ready" then c:write("\r\n", ...) end
 end
end

Notice that a cleaner way to do this would to close sockets on error, and use
log_sockets as a set by putting values in it as keys rather than values; this is a
rather common idiom in Lua:

confidential © LUA on WMP reference manual Page : 29 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

log_sockets = { }

local function on_accept(c)
 log_sockets[c] = true
 local function cleanup() c:close(); log_sockets[c] = nil end
 c:hook({‘error’,‘peer_close’}, cleanup)
end

wip.tcp_server(2007, on_accept)

function trace(...)
 for c, _ in pairs(log_sockets) do c:write("\r\n", ...) end
end

wip.ftp_client(host [,opts]) ASYNC

Creates an FTP client channel, on which get() and put() can be called to transfer
files. It blocks the current thread until the FTP login is fully performed or failed,
i.e. there’s no need to wait for event “open”.

opts is a name � value hashtable, which can contain:

• user=<string> : username for login (default = anonymous)

• password=<string> : password (default=wiplua@wavecom.com)

• port=<int> : FTP server port (default=21)

• mode=<bool> : true � passive, false � active. Default=active

Once the session is open, files can be read/written with methods :get()
and :put() .

wip.http_client(?)

Not implemented

wip.snmp_client(?)

Not implemented

wip.pop3_client(?)

Not implemented

3.3.4 udp

wip.udp([ip_address, port])

Create a UDP socket, optionally pseudo-connected to the given address and
port.

confidential © LUA on WMP reference manual Page : 30 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

wip.udp_sendto(buffer, [ip_address, port])

Send a datagram containing buffer to port port at address ip_address .

FIXMEFIXMEFIXMEFIXME: not implemented

wip.udp_recvfrom()

Read a datagram, and returns its content, its sender, and the originating port.

FIXMEFIXMEFIXMEFIXME: not implemented

3.3.5 ping

wip.ping()

FIXMEFIXMEFIXMEFIXME: not implemented

3.3.6 fcm

FCM flows are implemented through a channel API: once created, they respond
to methods :read() , :write() and :close() as a WIP channel would.

wip.fcm(name) ASYNC

Return an FCM stream as a channel. If the corresponding FCM is of modem-
type, it goes to data mode until the channel is closed with method :close(). name
must be one of “UART1”, “UART2”, “UART11”, “UART12”, “UART13”, “UA RT14”,
“UART21”, “UART22”, “UART23”, “UART24”, “USB”, “GSM ”, “GPRS” .

3.4 Flash objects

Flash objects are reified as tables, i.e. one can read and write them as regular
tables, and these operations are transparently translated into flash objects
read/write operations. However, these reified tables present a couple of
limitations:

• They don’t support base functions next() , pairs() , ipairs()

• They can’t store functions with upvalues (i.e. with local variables which
escaped their scope, see Lua ref manual for details. Upvalues are an
advanced feature which doesn’t exist in most languages, so don’t bother
too much: “normal” functions get serialized just fine).

• They can’t store userdata (bearers, channels, and other C live objects
lifted to Lua)

• Values in tables have to be storable

• Keys in tables have to be storable, and shouldn’t be tables not functions.
If they are, copies of them will be generated, which is probably not what
you want.

confidential © LUA on WMP reference manual Page : 31 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

A flash table can be translated into a regular (a.k.a. fully reified) table with
flash.reify(flashtable) ; however, operations on the resulting table aren’t
automatically committed to the flash objects anymore.

Moreover, “raw” tables are also supported: their keys can only be integers, and
their values can only be strings, but they directly map the regular ADL flash
tables, which eases communication between C and Lua code: a realtime data
gathering interrupt can simply fill a flash table, which can be read, processed
and reported by Lua code at a later time, without worrying about reboots.

flash.create(name [,size])

rawflash.create(name [,size])

Create a new flash table, referenced by name. It has size elements (defaults to
256). Return the created table.

flash.load(name)

rawflash.load(name)

Return the flash table or raw flash table reference d as name. Cause an
error if the table doesn’t exist.

flash.reify(flashtable)

Create a copy of a flash table as a regular table. The copy supports enumerators
and metatable hacks, but modifications on the copy won’t be reflected in flash
anymore.

flash.collect(flashtable)

Optimize the internal representation of a flash table which experienced many
entry deletions.

About flash handling, see also save() and loadboot() in the misc. subsection.

FIXMEFIXMEFIXMEFIXME: enumerators ipairs() , pairs() and next() should be modified so as to
support metamethods. This way, flash tables could behave completely normally.

3.5 at

Access to AT commands and AT unsolicited events instantly gives access to a
lot of features: GPIO, phonebook, SMS repository, audio… The main advantage
of using AT commands through Lua rather than directly is that you get access to
Lua features such as control logic (loops, conditional, functions, vars...), library
functions (e.g. regular expressions parsing), blocking calls (no need to mess with
callbacks) and multithreading.

confidential © LUA on WMP reference manual Page : 32 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

The only drawback is speed. If your application requires higher performances,
you might create a C function over ADL, bind it to Lua, or use it in a separate,
pure C task/interrupt if you’re under hard realtime constraints: garbage collected
programming is generally a bad idea when it comes to hard real time anyway.

at(cmd, …) ASYNC

Run an AT command string, and returns all intermediate responses, as well as
the final response, in a table. This call blocks until the final response is received,
and queues commands in case of concurrent accesses. In case you want a
lower level access for special commands (e.g. ATD), see internal.at_cmd() .

cmd is actually a printf -like format string: if it contains codes such as %i, %s etc.,
some extra args can be provided.

confidential © LUA on WMP reference manual Page : 33 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

AT unsolAT unsolAT unsolAT unsolicitedicitedicitedicited

Unsolicited events are reported by emitter “at ”. The event is the string between
the “+” and the “: ”. Anything between “: ” and “\r\n ” is passed in an extra
signal arg.

ExamplesExamplesExamplesExamples

In order to receive keyboard events as unsolicited AT events, we need to call
“AT+CMER=,1”:

at ‘at+cmer=,1’

 Now every keyboard event will be signalled by “+CKEV: m,n ”, with m the key
identifier, and n being 1 for press, 0 for release. We can display these events in a
loop:

again=true
while again do
 local emitter, event, params = wait(“at”,”CKEV”)
 local key, dir = params:match ‘(%d+),(%d+)’
 key = tonumber(key)
 dir = dir==’0’ and ‘released’ or ‘pressed’
 printf(“key %i has been %s”, key, dir)
end

(This loop can be put in the background, and stopped with again=false)

Notice that cutting arguments into relevant parts is generally very easy with
regular expressions and the :match() string method. However, beware that
numeric parts are kept as strings, not numbers. Here, key is a string, e.g. “18” ,
unless it’s converted to a number with tonumber() . This is a frequent cause of
bugs.

confidential © LUA on WMP reference manual Page : 34 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

3.6 sms

sms.send(phonenb, message) ASYNC

Send an SMS in text mode; the SIM card must be ready.

SMS reception eventSMS reception eventSMS reception eventSMS reception event

SMS are signalled by the emitter “sms” sending the event “read” . As an attached
argument is a table with fields phonenum, timestamp and text , all of them
containing a string.

ExampleExampleExampleExample

function on_sms_rcv (emitter, event, msg)
 assert (emitter==’sms’ and event==’read’)
 printf("SMS!\nFrom %s, received at %s:\n%s",
 msg.phonenum, msg.timestamp, msg.text)
 return ‘again’ -- don't detach the hook.
end
wip.sighook ("sms", "read", on_sms_rcv)

StoredStoredStoredStored SMS handling SMS handling SMS handling SMS handling

Currently through AT commands, a proper consistent API will be provided.

ExampleExampleExampleExample

$ = at'at+cmgl="REC READ"'
= {
 "",
 "+CMGL: 2,\"REC READ\",\"123\",,\"07/07/25,16:13: 32+00\"",
 "Repondeur: 3 nouveaux messages; dernier appel 16 :13 du 0687212437.
Rappelez 123.",
 "",
 "+CMGL: 12,\"REC READ\",\"3000\",,\"99/12/31,23:5 9:59+00\"",
 "",
 "",
 "\r\nOK" }
$ _

confidential © LUA on WMP reference manual Page : 35 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

3.7 shell

The shell allows you to take control of the module, over TCP/IP (telnet) or over
some FCM stream such as UARTs. It supports optional authentication, as
follows.

If there is no table wip.shell.auth , the shell immediately accepts all conncetions.
If there is such a field, it’s expected to have a field method , set at “open ” (no
authentication), “basic ” (password, sent in clear over the network), or
“challenge ” (challenge/response based authentication: it requires a response
generator in addition to knowledge of the password, but makes sure the
password can’t be eavesdropped).

Login and password information are stored as follows: if there’s a
wip.shell.auth.users table, it’s expected to contain user names as keys, and as
values, either the password as strings, or a table with a password field holding
the password. If there is no wip.shell.auth.users table, then there should be a
wip.shell.auth.password , and the authentication dialog will ask for the password
without a login.

ExampleExampleExampleExample

The following code will make authentication mandatory, with user ‘wipuser’ and
password ‘123456’:

wip.shell.auth = {
 method = 'basic',
 users = { wipuser = "123456" } }

FIXMEFIXMEFIXMEFIXME: challenge/response authentication not implemented yet.

wip.shell.channel : channel or nil

The WIP channel over which the shell is served. Should be nil when state is
“dead”.

wip.shell.snatch: Boolean

Whether it is allowed for a TCP client to snatch the shell from another client.

FIXMEFIXMEFIXMEFIXME currently SNATCH instead of snatch

FIXMEFIXMEFIXMEFIXME currently mostly broken

wip.shell.prompt: string

The string served as the normal prompt. Default=”$”.

FIXMEFIXMEFIXMEFIXME should be allowed to make it a function.

confidential © LUA on WMP reference manual Page : 36 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

wip.shell.prompt2: string

The string served as a go-on prompt, when the command is multi-lines and not
terminated. Default=”+”.

FIXMEFIXMEFIXMEFIXME should be allowed to make it a function.

wip.shell.greeting: string

String served as a welcome MOTD when loggin in the shell.

wip.shell.telnet_server([port])

Starts a telnet server to allow connecting to the shell.

FIXMEFIXMEFIXMEFIXME: port is currently mandatory

wip.shell.fcm(name) ASYNC

Directs the shell on an FCM device. Name is an FCM name. For instance, if you
are entering AT commands on UART1, you can turn the terminal into a lua shell
with:

AT+LUA=”wip.shell.fcm ‘UART1’”
Lua Interactive Shell
$ _

wip.shell.print(…) ASYNC FIXMEFIXMEFIXMEFIXME Keep it private?

wip.shell.quit() FIXMEFIXMEFIXMEFIXME Keep it private?

confidential © LUA on WMP reference manual Page : 37 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

3.8 proc

proc.tasks.running: thread or nil

proc.tasks.waiting: (emitter ���� event ���� thread_reference) table

proc.tasks.ready: thread list

Threads not running, but ready to be scheduled (not waiting for any event)

proc.channels: (id number ���� channel) table

All currently running channels, indexed by a unique number

proc.bearers: (id number, name ���� bearer) table

All currently running bearers. Each bearer is referenced twice: under a unique
number id, and under its user-friendly name.

proc.timers: FIXME

Pending and cyclic timers.

3.9 misc

try(f [,args])

Runs f(args) in a separate task, and waits for it to terminate. Return true
followed by all the results returned by f() upon success, or false followed by
the error message upon failure.

This function replaces pcall() from the standard library in most use cases, as it
allows f() to yield coroutine, i.e. call ASYNC functions. It is slower and uses more
memory than pcall() .

gc()

Perform a full garbage collector, collect the garbage in the proc.tasks table, and
return the number of bytes taken by Lua VM after collection.

l(…) ASYNC

Load files from the FTP server whose name is in global variable PEER_ADDR.
There can be many names, which will all be loaded in a single connection. If the
file name doesn’t terminate in “.lua” or “.luac”, a “.lua” extension is
automatically added.

Files must be lua sources or lua bytecode dumps. They are compiled (or
undumped) and executed.

When no names are provided, the last series of names is reused. This series is
stored in flash, and is therefore remembered across reboots.

confidential © LUA on WMP reference manual Page : 38 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

save(…)

Take variable names (as strings), and save every global variables named into the
flash table wiplua.boot, so that they will be available across reboots.

ExampleExampleExampleExample

$ y = { 'foo' }
$ x = {1, 2, 3, y, y, f = function(x) return x+1 en d}
$ save ’x’

<reboot>

$ = x
= { 1, 2, 3, { 'foo' }, { 'foo' }, f = [function 0x 180c20bc] }
$ = x[4] == x[5] -- Check that shared subexpressions are respected
= true
$ = x.f(3)
= 4
$ _

p(…) ASYNC

Print Lua values on the shell: not only strings and numbers, but also arbitrarily
nested tables, with indentation. Handle recursive tables gracefully.

confidential © LUA on WMP reference manual Page : 39 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

4 C API

4.1 Lua state handling

luaW_start(luaL_Reg *init_table);

Start running the Lua VM, running all initialization functions in init_table (see Lua
manual for luaL_Reg* init tables).

luaW_run(char *src);

Run src as a new task in the VM. src can be Lua sources ar a compiled chunk.

luaW_stop();

Kill the Lua VM and release associated resources.

luaW_atLuaCmdSubscribe();

Register the AT command AT+LUA=”xxx”, which will run the Lua source code
between quotes in a new task. The VM must be running.

Module initialization functionsModule initialization functionsModule initialization functionsModule initialization functions

int luaopen_strict (lua_State *L);

Strict global variables declaration: with this module loaded, you can’t implicitly
create a new global variable inside a function. You need to create it at the
toplevel, outside any function, with e.g. myGlobalVar = someValue, or to declare
it as global with global ‘myGlobalVar’.

This catches a lot of bugs linked to typos, and should be kept on unless you’re
extremely tight on memory.

int luaopen_scheduling (lua_State *L);

Mandatory: loads scheduling primitives.

int luaopen_options (lua_State *L);

Mandatory for all WIP libraries: handles channel, bearer and stack options.

int luaopen_channels (lua_State *L);

WIP generic channels. Requires luaopen_options. Required by luaopen_tcp,
luaopen_shell.

int luaopen_tcp (lua_State *L);

confidential © LUA on WMP reference manual Page : 40 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

WIP networking channels: TCP, UDP, PING, FTP, HTTP, SMTP, POP3. Requires
luaopen_channels and luaopen_options.

int luaopen_flash_read (lua_State *L);

Flash tables reading.

int luaopen_flash_write (lua_State *L);

Flash table creation and writing. Requires luaopen_flash_read.

int luaopen_mem (lua_State *L);

Memory monitoring functions.

int luaopen_sms (lua_State *L);

SMS monitoring and sending.

int luaopen_timer (lua_State *L);

Timer events.

int luaopen_shell (lua_State *L);

shell over channels, be it TCP or FCM. Requires luaopen_channels. You probably
want luaopen_fcm and/or luaopen_tcp as well.

int luaopen_bearers (lua_State *L);

WIP bearers. You want this if you plan to handle bearers from Lua.

int luaopen_print (lua_State *L);

Advanced printing. Without this, when trying to print a table, you’ll simply get
something like “[table 0x12345678]”.

int luaopen_misc (lua_State *L);

Mandatory, it includes boot code.

int luaopen_at (lua_State *L);

AT commands handling.

int luaopen_rawflash (lua_State *L);

Raw flash tables, interoperable with adl_flhXxx() functions.

confidential © LUA on WMP reference manual Page : 41 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

4.2 WIP interface from C

channels and bearers reification / signal emission / idioms for handling
multitasking.

Channel handlingChannel handlingChannel handlingChannel handling

wip_channel_t luaW_checkchannel(lua_State *L, int i);

Check that a function’s argument number i is a channel and returns it, or causes
an invalid parameter error.

void luaW_newchannel(lua_State *L, wip_channel_t c);

Register a channel into Lua. A channel must be registered exactly once.

int luaW_pushchannel(lua_State *L, wip_channel_t c);

Push an already registered channel on Lua stack.

BearerBearerBearerBearer handling handling handling handling

wip_bearer_t luaW_checkbearer(lua_State *L, int i) ;

Check that a function’s argument number i is a bearer and returns it, or causes
an invalid parameter error.

void luaW_newbearer(lua_State *L, wip_bearer_t b , char *name);

Register a bearer into Lua. A bearer must be registered exactly once.

int luaW_pushbearer(lua_State *L, wip_bearer_t b) ;

Push an already registered bearer on Lua stack.

Signals and synchronizationSignals and synchronizationSignals and synchronizationSignals and synchronization

void luaW_signal_channel(lua_State *L, wip_channel _t emitter, char *event,

 int nargs);

confidential © LUA on WMP reference manual Page : 42 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

Signal event on behalf of channel emitter ; this signal will be caught By all Lua
threads and hooks waiting for it. Some extra arguments can be sent by setting
nargs >0 and stacking the corresponding values on L’s pseudo-stack.

void luaW_signal_str(lua_State *L, char *emitter, char *event, int nargs);

Signal event on behalf of string emitter ; this signal will be caught By all Lua
threads and hooks waiting for it. Some extra arguments can be sent by setting
nargs >0 and stacking the corresponding values on L’s pseudo-stack.

void luaW_evh_signal(wip_event_t *ev, void *ctx);

This WIP event handler will emit signals open / read / write / peer_close /
ping / error on behalf of ev->channel . This is the standard way to interface a
channel with Lua.

confidential © LUA on WMP reference manual Page : 43 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

4.3 Optimized memory pools

Although not mandatory, reserving and configuring a memory area for Lua will
significantly improve memory efficiency. However, even when memory pools are
set up, it falls back on ADL memory allocator when it is exhausted, or can’t
handle a certain size of memory chunk.

FIXME

confidential © LUA on WMP reference manual Page : 44 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

5 Samples showcase

5.1 HTTP server

Among the samples provided

5.2 FTP server

5.3 XML encoder and decoder

5.4 Multi-protocol application

Send commands through SMS, through V24, through TCP/IP, through HTTP…

Send UART data through FTP (without using FTP nor WIPSoft)

at+lua=”wip.bearer_client(‘GPRS’,{…})”
at+lua=”uart2ftp ‘wipuser:123456@ftp.wavecom.com/my data.txt’”
<DATA><ETX>
OK

FIXMEFIXMEFIXMEFIXME: untested code.

function uart2ftp(url)

 -- Parse URL
 local user, pass, server, file = url:match ‘^(.-):(.-)@(.-)/(.*)$’
 if not user then
 user, pass = ‘anonymous’, ‘lua@wavecom.com’
 server, file = url:match ‘^(.-)/(.*)$’
 end
 if not server then error “Can’t parse URL” end

 -- Connect to FTP server
 local session = wip.tcp_client (server, 21)
 local data = nil
 local s = wip.tcp_server (0, function (client) y=client; s:close() end)
 z:wait "accept"
 local a,b,c,d = x.addr:match ‘(%i+).(%i+).(%i+).(%i+)’
 local e,f = x.port/256 + x.port%256
 data:write(string.format(

confidential © LUA on WMP reference manual Page : 45 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

 "USER %s\r\nPASS%s\r\nPORT %s,%s,%s,%s,%i,%i\r\ nRETR %s\r\n",
 user, pass, a, b, c, d, e, f, file))
 repeat local line = session:read ‘*l’ until line:match ‘^227 ’

 -- Pipe data
 local uart = wip.fcm ‘UART1’
 repeat
 local finished = false
 local x = uart:read()
 local i, j = x:find ‘.-[^\10]\3’
 if j then x = x:sub(1, j-2); finished=true end
 x=x:gsub(‘\10(.)’,’%1’)
 uart:write(x)
 until finished

 -- Clean up and leave
 uart:close()
 data:close()
 session:write ‘QUIT\r\n’
 session:close()
end

6 Other tools

6.1 off-line compilation

Compiling an application on the WCPU is very convenient, but comes with a
couple of drawbacks:

• you need to download it before knowing whether there are any errors in
it, including trivial syntax errors

• Compilation takes time

• More important, it also takes RAM. On a WCPU with only 256 KB of RAM,
one must sometimes be careful with memory usage.

• The final compiled program contains debug information, which can
double its memory footprint.

For these reasons, we offer a compiler that turns source code into bytecode on
the development computer. It also has a -s option which strips debug
information from the resulting binary. This compiler is actually nothing but a
regular Lua compiler for Intel processors with the number type set to 32 bits
integers (ARM and Intel processors already have the same endianness). This
compiler is called luac51int.exe , and consists of this single executable file.

The Lua source to bytecode compiler provided with the distribution is called
luac51int.exe , and behaves as the regular luac.exe compiler except that it
compile for the integral version of Lua, embedded in OpenAT-Lua.

confidential © LUA on WMP reference manual Page : 46 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

lua51int.exe is an MS-Windows interpreter for integral Lua: it can read Lua
bytecode intended for OpenAT-Lua; however, most OpenAT-Lua programs
won’t run, since OpenAT libraries are not available under MS-Windows.

lua2c.bat uses the binaries above to compile lua source files into C source files
holding a const char * declaration, storing precompiled bytecode. The resulting
file contains that string, and an integer constant holding its length. These can be
used with luaW_lrun(L, string, string_length) to be run byt the Lua VM.

Option -h gives a short usage manual:

C:\workdir> lua2c -h

Compile a lua source file or a luac bytecode file i nto a C source file
declaring a global const string, and a const int ho lding that string
length. The string can be run by a lua interpreter, e.g. luaW_lrun().

Usage: lua2c input_file [options]

Options:
 -o <filename>: output C file name.
 -n <name>: name of the string global variabl e
 -l <name>: name of the string length global variable
 -L <number>: how many chars to print per line in the C file
 -C <filename>: lua compiler used to produce byte code, if applicable
 -c / +c: whether it is a lua source file t o precompile
 -s / +s: whether to strip debug info when precompiling
 -a / +a: whether result shall be appenned to C file or overwrite it
 -v / +v: whether to print out configuratio n
 -h: print this help and exits

For options which are not set explicitly, sensible defaults are
guessed. Check them with -V in case of doubt.

C:\workdir> type hello.lua

print "hello world"

C:\workdir> lua2c -s hello.lua
C:\workdir> type hello.c

/* This file contains a precompiled Lua chunk, and should not be
 * edited manuallly. Edit the corresponding lua sou rce file and
 * regenerate it instead.
 *
 * This file has been generated with:
 *
 * $ lua51int lua2c.lua -s hello.lua
 */

#pragma warning(disable:4305) /* Obnoxious VC6 warn ing off. */

static const char _hello[] = {
 27, 'L', 'u', 'a', 'Q', 0, 1, 4, 4, 4, 4, 1, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 4, 0, 0, 0,
 5, 0, 0, 0, 'A', '@', 0, 0, 28, '@', 0, 1, 30, 0, 128, 0,
 2, 0, 0, 0, 4, 6, 0, 0, 0, 'p', 'r', 'i', 'n', 't', 0, 4,
 12, 0, 0, 0, 'h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0 };
const char *hello = _hello;
const int hello_len = 96;
C:\workdir> _

confidential © LUA on WMP reference manual Page : 47 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

Appendix: Setting up Windows for
TCP/IP over PPP Client

This appendix will walk you through the installation of a PPP client over a serial
port in Windows XP. Some slight adaptations might be required for other
Microsoft OSes.

We assume that you have at least one, ideally two serial ports on your
development computer. We also assume that this port is connected to a devkit
port serving TCP/IP as a PPP server over UART; with the default sample
application, that would be UART1. We also assume that this port is able to serve
data at 115 Kbps, which is the case of both UARTs on the Q26 and WMP100
devkits.

Important warning:Important warning:Important warning:Important warning: Beware that UART2 on WCPUs miss signals DTR, DSR, RI
and DCD. This can confuse some lower end serial ports, especially some serial-
to-USB converters. If you experience troubles serving PPP over UART2, try on
UART1.

6.2 Configure the serial port

We assume you have connected UART1 to your computer’s COM1.

Start > Parameters > Control Panel > System > Hardware > Device Manager >
Ports (COM & LPT) > Communication Port (COM1) > right-click > Properties >
Port Settings

confidential © LUA on WMP reference manual Page : 48 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

Set the bit-rate to 115200.

6.3 Add the devkit as a modem

Start > Parameters > Control Panel > Add Hardware > Next > “Yes, I have
already connected the hardwatre” > “Add a New Hardware Device” >
“Install the Hardware that I Manually select from a list (bottom of the scroll-list)
> Modems > “Don’t Detect my Modem” > Communication cable between two
computers > COM1 > Finish

confidential © LUA on WMP reference manual Page : 49 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

Check the installation:

Start > Parameters > Control Panel > System > Hardware > Device Manager >
Modems > Communication cable between two computers > Right-click >
Properties > Modem (2nd tab)

Set maximal speed to 115200:

confidential © LUA on WMP reference manual Page : 50 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

6.4 Create the connection

Start > Settings > Network Connections > Right-click > Open >
Create a new Connection (in the panel on the left) > Setup an advanced
Connection > Connect directly to another Computer > Guest “This computer is
used to access information on the host computer > [give a name to the
connection] > Communication cable between two Computers (COM1) >
“Anyone ‘s use” or “My use only”, at your preference > Finish

Set username: wipuser

Set password: 123456

Check the “remember” checkbox.

Set the connection’s properties

confidential © LUA on WMP reference manual Page : 51 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

Properties > Configure… (button on the right, below the scroll list) > Set speed
to 115200

Network config > Check “Internet Protocol (TCP/IP)”

Connect:

confidential © LUA on WMP reference manual Page : 52 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

That’s it; you’re connected to your WMP100 through a TCP/IP link. You can
check by pingin the module:

confidential © LUA on WMP reference manual Page : 53 / 53

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged
without prior written agreement. Ce document est la propriété exclusive de WAVECOM. Il ne peut
être communiqué ou divulgué à des tiers sans son autorisation préalable.

Printed document not updated – Document imprimé non tenu à jour

7 Appendix: anatomy of a Lua application

Lua is provided as a library, so that you can add it to your programs, and add C
functions in your Lua programs.

