| All of dw [|

|

IBM home | Products & services | Support & downloads | My account

IBM developer Works: Java technology : Java technology articles

Turning streams inside out, Part 2: Optimizing internal Javal/O

developerWorks

o =1
Discuss FIPF email i)

Replacing the byte-array and piped streams
Level: Intermediate

Merlin Hughes (merlin@merlin.org)
Cryptographer, Baltimore Technologies
September 2002

While the new Java /O framework, j ava. ni 0, addresses most of the performance issues
with /O support, it does not address all the performance needs of internal application
communications using byte-arrays and pipes. In thisfinal articlein atwo-part series, Java
cryptographer and author Merlin Hughes devel ops a new set of streams that complement the
standard Java /O byte-array and piped-stream classes, emphasizing performance as adesign
goal. Share your thoughts on this article with the author and other readersin the discussion
forum on this article. (Y ou can also click Discuss at the top or bottom of the article.)

Inthefirst article in this series, you learned some different approaches to solving the problem of
reading data from a source that can only write out its data. Among the potential solutions, we
investigated use of the byte-array streams, the piped streams, and a custom framework that tackles
the problem directly. The custom approach was clearly the most efficient solution; however,
examining the other approaches was constructive in highlighting some problems with the standard
Java streams. In particular, the byte-array output stream does not provide an efficient mechanism to
provide read-only access to its contents, and the piped streams generally exhibit extremely poor
performance.

Welll address these issues in this article by implementing alternative classes that provide the same
broad capabilities, but with more of an emphasis on performance. To begin, let's briefly touch on the
issue of synchronization asit relates to 1/0O streams.

Synchronization issues

In general, | recommend avoiding the needless use of synchronization where thereis no particular
need for it. Clearly, if aclass will be concurrently accessed by multiple threads, then it needsto be
thread safe. However, there are many cases where concurrent access makes no sense, and
synchronization is a needless overhead. For example, concurrent access to a stream is inherently non-
deterministic -- you cannot predict which datawill be written first, or which thread will read what
data-- and, as such, israrely of any use. Imposing synchronization on all streamsis thus a cost that
provides no practical benefit. If a particular application requires thread safety, that can be enforced
though the application's own synchronization primitives.

Contents:

Synchronization issues

A better byte-array output
stream

A better byte-array input
stream

Using the new byte-array
streams

Better piped streams

Using the new piped
streams

Performance results
Conclusion
Resources

About the author
Rate this article

Related content:

Turning streams inside out,
Part 1

Introduction to Java l/O

Subscribe to the
developerWorks newsl etter

Also in the Java zone:

Tutorials

Tools and products
Code and components

Articles

Thisis, in fact, the same choice that was made for the classes of the Collections API: by default, sets, lists, and so on are not thread
safe. If an application desires athread safe collection, it can use the Col | ect i ons classto create a thread safe wrapper around a
non-thread safe collection. Were it of any use, an application could use exactly the same mechanism to allow thread safety to be

wrapped around a stream; for example, Qut put St r eam out =

St reans. synchr oni zedQut put St r eam

(byt eSt rean) . Seethe St r eans classin the accompanying source code for an example implementation.

Consequently, | have not used synchronization to provide thread safety for classes where | do not envision them being usable by
multiple concurrent threads. Before you adopt this approach in general, | recommend that you study the Threads and Locks chapter
of the Java Language Specification (see Resources) to understand the potential pitfalls; in particular, the ordering of reads and
writes is not guaranteed when synchronization is not employed, so apparently harmless concurrent access to unsynchronized read-

only methods could lead to unexpected behaviour.

A better byte-array output stream

The Byt eAr r ayCut put St r eamclassis agreat stream to use when you need to dump an unknown volume of datainto a

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-109.ibm.com/redirectdWPS.htm
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/java/
http://www-105.ibm.com/developerworks/papers.nsf/dw/java-papers-bynewest?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/
javascript:void forumWindow()
ftp://www6.software.ibm.com/software/developer/library/j-io2src.zip
javascript:void newWindow()
http://www-106.ibm.com/developerworks/java/library/j-io1/
http://www-106.ibm.com/developerworks/java/library/j-io1/
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/315A3E2B03D5BC00862568BE0060309F?OpenDocument
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=article
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=article
http://www-106.ibm.com/developerworks/java/
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bynewest?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/tools.nsf/dw/java-all-byname?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/tools.nsf/dw/java-uicomponents-bytitle?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/papers.nsf/dw/java-papers-bytopic?OpenDocument&Count=500
mailto:merlin@merlin.org
javascript:void forumWindow()
javascript:void forumWindow()
http://www-106.ibm.com/developerworks/java/library/j-io1/
ftp://www6.software.ibm.com/software/developer/library/j-io2src.zip

memory buffer. | useit frequently when | need to store some data for later re-reading. However, using thet oByt eAr r ay()
method to obtain read access to the resulting data is quite inefficient because it actually returns a copy of theinternal byte array.
For small volumes of data, this approach is of little concern; however, as volumes grow, it becomes needlessly inefficient. The
class has to copy the data because it cannot enforce read-only access to the resulting byte array. If it returned its interna buffer,
then the recipient would have, in the general case, no guarantee that the buffer was not being concurrently modified by another
recipient of the same array.

The St ri ngBuf f er class has already solved asimilar problem; it provides awritable buffer of characters, and supports
efficiently returning read-only St r i ngsthat read directly from the internal character array. Becausethe St r i ngBuf f er class
controls write access to its internal array, it can copy the array only when necessary; that is, when it hasexported aSt ri ng and a
caller subsequently modifiesthe St r i ngBuf f er . If no such modification occurs, then no unnecessary copying will be
performed. The new 1/0 framework addresses this problem in asimilar manner by supporting wrappers around byte-arrays that can
enforce appropriate access controls.

We can use this same general mechanism to provide efficient buffering and re-reading of data for applications that need to use the
standard streams API. Our example will present an alternative to the Byt eAr r ay Qut put St r eamclass that can efficiently
export read-only accessto the internal buffer by returning aread-only | nput St r eamthat reads directly from the internal byte

array.

Let'stake alook at the code. The constructorsin Listing 1 allocate an initial buffer to hold data written to this stream. This buffer
will automatically expand as needed to hold more data.

Listing 1. An unsynchronized byte-array output stream
package org.nmerlin.io;

i mport java.io.*;

*

/
An unsynchroni zed Byt eArrayQutput Stream al ternative that efficiently
provi des read-only access to the internal byte array with no
unnecessary copyi ng.

E I I

@ut hor Copyright (c) 2002 Merlin Hughes <nerlin@rerlin.org>

~

public class BytesQut put St ream ext ends Qut put Stream {
private static final int DEFAULT_I NI TI AL_BUFFER_SI ZE = 8192;

/] internal buffer

private byte[] buffer;
private int index, capacity;
[/ is the stream cl osed?
private bool ean cl osed;

I/ is the buffer shared?
private bool ean shar ed;

public BytesQutputStream () {
this (DEFAULT_I NI TI AL_BUFFER_SI ZE) ;

}

public BytesQutputStream (int initialBufferSize) {
capacity = initial BufferSize;
buf fer = new byt e[capacity];

}

Listing 2 shows the writing methods. These methods expand the internal buffer, if necessary, and then copy in the new data. When
expanding the internal buffer, we double its size and add the amount necessary to hold the new data; the capacity thus grows
exponentially to hold any necessary volume. For efficiency, if you know the expected volume of data that you will write, you
should specify a corresponding initial buffer size. Thecl ose() method just sets an appropriate flag.

Listing 2. The write methods

public void wite (int datunm) throws | OException {
if (closed) {
t hrow new | CException ("Stream cl osed");
1} else {
if (index >= capacity) {
/1 expand the internal buffer
capacity = capacity * 2 + 1;
byte[] tnp = new byt e[capacity];
System arraycopy (buffer, 0, tnp, O, index);
buf fer = tnp;
/1 the new buffer is not shared
shared = fal se;
}
/'l store the byte
buffer[index ++] = (byte) datum
}
}

public void wite (byte[] data, int offset, int |ength)
throws | CException {
if (data == null) {
t hrow new Nul | Poi nt er Exception ();
} else if ((offset < 0) || (offset + I ength > data.l ength)
Il (length < 0)) {
t hrow new | ndexQut Of BoundsException ();
} else if (closed) {
t hrow new | CException ("Stream cl osed");
} else {
if (index + length > capacity) {
/1 expand the internal buffer
capacity = capacity * 2 + | ength;
byte[] tnmp = new byt e[capacity];
System arraycopy (buffer, 0, tnp, O, index);
buf fer = tnp;
/'l the new buffer is not shared
shared = fal se;
}
/1 copy in the subarray
System arraycopy (data, offset, buffer, index, |ength);
i ndex += | engt h;
}
}

public void close () {
closed = true;

}

The byte-array extraction method in Listing 3 returns a copy of the internal byte-array. Because we cannot prevent the caller from
writing to the resulting array, we cannot safely return a direct reference to the internal buffer.

Listing 3. Converting to a byte-array

public byte[] toByteArray () {
/1 return a copy of the internal buffer
byte[] result = new byte[index];
System arraycopy (buffer, 0, result, 0, index);
return result;

When methods provide read-only access to the stored data, they can safely and efficiently use the internal byte-array directly.

Listing 4 shows two such methods. Thewr i t eTo() method writes the contents of this stream to an output stream; it performs the
write operation directly from the internal buffer. Thet ol nput St r ean() method returns an input stream from which the data
can be efficiently read. It returnsaByt es| nput St r eam which is an unsynchronized aternative to

Byt eArr ayl nput St r eam that reads directly from our internal byte array. In this case, we also set aflag to indicate that the
internal buffer is now shared with the input stream. Thisis important to protect against this stream being modified while the
internal buffer is shared.

Listing 4. Read-only access methods

public void witeTo (QutputStreamout) throws | OException {
I/l wite the internal buffer directly
out.wite (buffer, 0, index);

}

public InputStreamtol nputStream () {
/1 return a streamreading fromthe shared internal buffer
shared = true;
return new Bytesl nput Stream (buffer, 0, index);

}

The only method that can potentially overwrite shared dataisther eset () method, shown in Listing 5, which empties this
stream. Therefore, if shar ed istrueand r eset () iscalled, we create anew internal buffer instead of just resetting the write
index.

Listing 5. Resetting the stream

public void reset () throws | OException {
if (closed) {
t hrow new | OException ("Stream cl osed");
} else {
if (shared) {
/] create a new buffer if it is shared
buf fer = new byt e[capacity];

shar ed fal se;
}
/'l reset index
i ndex = 0;

}
}
}

A better byte-array input stream

The Byt eAr r ayl nput St r eamclassisideal to use for providing streams-based read access to in-memory binary data.
However, it has two design features that cause me occasional desire for an aternative. Firstly, the classis synchronized; this, as |
have explained, is unnecessary for most applications. Secondly, it provides an implementation of ther eset () method that, if
called prior to mar k() , ignorestheinitial reading offset. Neither of these are flaws; however, they're not necessarily aways
desirable.

The Byt esl nput St r eamclass, shown in Listing 6, is an unsynchronized, and largely unremarkable byte-array input stream
class.

Listing 6. An unsynchronized byte-array input stream

package org.merlin.io;
i mport java.io.*;

/**

* An unsynchroni zed ByteArrayl nput Stream al ternati ve.
*
* @ut hor Copyright (c) 2002 Merlin Hughes <nmerlin@rerlin.org>
*/
public class Byteslnput Stream ext ends | nput Stream {
/] buffer fromwhich to read
private byte[] buffer;
private int index, limt, mark;
/1 is the stream cl osed?
private bool ean cl osed;

public ByteslnputStream (byte[] data) {
this (data, 0, data.length);
}

publ i c ByteslnputStream (byte[] data, int offset, int length) {
if (data == null) {
t hrow new Nul | Poi nt er Exception ();
} else if ((offset < 0) || (offset + length > data.length)
|| (length < 0)) {
t hrow new | ndexQut Of BoundsException ();

1} else {
buffer = data;
index = offset;
limt = offset + |ength;
mark = of fset;
}
}
public int read () throws | OException {
if (closed) {
t hrow new | CException ("Stream cl osed");
} else if (index >= limt) {
return -1; // ECF
} else {
return buffer[index ++] & Oxff;
}
}

public int read (byte data[], int offset, int |ength)

throws | OException {

if (data == null) {
t hrow new Nul | Poi nt er Exception ();

} elseif ((offset < 0) || (offset + |length > data.length)

[l (length < 0)) {

t hrow new | ndexQut Of BoundsException ();

} else if (closed) {
t hrow new | CException ("Stream cl osed");

} elseif (index >=limt) {
return -1; // EOF
} else {
/] restrict length to avail abl e data
if (length > 1limt - index)
length = limt - index;

/] copy out the subarray

System arraycopy (buffer, index, data, offset, |length);
i ndex += | engt h;

return | ength;

}
}

public long skip (long anobunt) throws | OException {
if (closed) {
t hrow new | CException ("Stream cl osed");
} else if (ampunt <= 0) {
return O;
} else {
/] restrict anpunt to avail able data
if (anmpunt > limt - index)
amount = limt - index;
index += (int) anount;
return anount;
}
}

public int available () throws | OException {
if (closed) {
t hrow new | CException ("Stream cl osed");
} else {
return limt - index;
}

}

public void close () {
closed = true;
}

public void mark (int readLimt) {
mar k = i ndex;
}

public void reset () throws | CException {
if (closed) {
t hrow new | CException ("Stream cl osed");
} else {
/] reset index
i ndex = mark;
}
}

publ i c bool ean mar kSupported () {
return true;

}

Using the new byte-array streams
The code in Listing 7 demonstrates how to use the new byte-array streams to solve the problem addressed in thefirst article
(reading the compressed form of some data):

Listing 7. Using the new byte-array streams

public static |nputStream newBrut eFor ceConpress (| nputStream in)
throws | OException {
Byt esCQut put Stream si nk = new Byt esQut put Stream () ;
Qut put Stream out = new &GZI PCut put Stream (si nk) ;
Streans.io (in, out);
out.close ();
return sink.tol nputStream ();

Better piped streams
The standard piped streams, while safe and reliable, leave much to be desired in terms of their performance. Severa factors
contribute to this performance problem:

. Theinternal 1024-byte buffer isinflexible for different usage scenarios; it isjust too small for large volumes of data.

. Array-based operations simply call through to an inefficient byte-by-byte copy operation. This operation isitself
synchronized, resulting in extremely heavy lock contention.

. If apipe becomes empty or full and athread is blocked on this state changing, the thread is awakened even if just asingle
byte isread or written. In many cases, it will use this single byte and immediately block again, resulting in little useful work
being done.

The last factor is a consequence of the strict contract that the API provides. This strict contract is necessary for the streams to be
used in the most general possible applications. However, it is possible to come up with a more relaxed contract for a piped stream
implementation that sacrifices strictness for increased performance:

. Blocked readers and writers awaken only when the buffer's available data (in the case of a blocked reader) or free space (in
the case of awriter) reaches a certain specified hysteresis threshold or when an abnormal event, such as pipe closure, occurs.
Thisimproves performance because threads awaken only when they can perform a reasonable amount of work.

. Only asingle thread may read from the pipe, and a single thread may write to the pipe. Otherwise, the pipe cannot reliably
determine when the reader or writer thread has accidentally died.

The typical application scenario of an independent reader and writer thread is perfectly served by this contract; applications that
require immediate waking can use a zero hysteresis level. Aswelll see later, an implementation of this contract can operate over
two orders of magnitude (one hundred times) faster than the standard APl streams.

We could use one of several potential APIs to expose these piped streams. we could mimic the standard classes and explicitly
attach two streams; alternatively, we could expose a Pi pe class from which we can extract the input and output streams. Instead,
we'll go with asimpler approach: create aPi pel nput St r eamand then extract the associated output stream.

The general operation of these streamsiis as follows:

. Weuseaninternal array as aring-buffer (see Figure 1): A read and awrite index are maintained in this array; dataare
written to the write index and read from the read index; and the indices wrap around when they reach the end of the buffer.
Neither index can pass the other. When the write index reaches the read index, the pipe is full and no more data can be
written. When the read index reaches the write index, the pipe is empty and no more data can be read.

. Synchronization is used to ensure that the two co-operating threads see up-to-date values for the pipe's state. The Java
Language Specification is quite lenient in its rules on the ordering of memory accesses, which prevents the use of lock-free
buffering techniques.

Figure 1. A ring buffer

read read
(- | — wite) — [
+—I— x|
write write
read read
- e
B e |
write write

The code that implements these piped streams is presented in the following code listings. Listing 8 shows the constructors and
variables used by the class. Thisisan | nput St r eamfrom which you can extract the corresponding Qut put St r eam(code
shown in Listing 17). In the constructors you can specify the internal buffer size and a hysteresis level; thisisthe fraction of the
buffer's capacity that must become used or available before a corresponding reader or writer thread will be immediately awakened.

We

maintain two variables, r eader andwr i t er , which correspond to the reader and writer threads. We use these to identify

when one thread dies while the other is still accessing the stream.

Listing 8. An alternative piped stream implementation

package org.nerlin.io;

import java.io.*;

/*
*

*

*
*
*
*
*

*

An efficient connected stream pair for conmunicating between

the threads of an application. This provides a | ess-strict contract
than the standard pi ped streans, resulting in nuch-inproved
performance. Al so supports non- bl ocki ng operati on.

@ut hor Copyright (c) 2002 Merlin Hughes <nerlin@rerlin.org>
/

public cl ass Pipel nput Stream ext ends | nput Stream {

/] default val ues

private static final int DEFAULT BUFFER S| ZE = 8192;
private static final float DEFAULT HYSTERESIS = 0. 75f;
private static final int DEFAULT_TI MEOQUT _MS = 1000;

/1 flag indicates whether nethod applies to reader or witer
private static final boolean READER = fal se, WRI TER = true;

/1 internal pipe buffer

private byte[] buffer;

/] read/wite index

private int readx, witex;

/'l pipe capacity, hysteresis |evel
private int capacity, |evel;

/1 flags

private bool ean eof, closed, sleeping, nonBl ocking;
/] reader/witer thread

private Thread reader, witer;

/1 pending exception

private | OException exception;

/| deadl ock- br eaki ng ti meout

private int tinmeout = DEFAULT_TI MEQUT MNS;

public PipelnputStream () {
this (DEFAULT_BUFFER S| ZE, DEFAULT_HYSTERESI S);

}

publ i c Pipel nputStream (int bufferSize) {
this (bufferSize, DEFAULT_HYSTERESI S);

}

/'l e.g., hysteresis .75 nmeans sl eeping reader/witer is not
/1 inmrediately woken until the buffer is 75%full/enpty
publ i c Pi pel nput Stream (int bufferSize, float hysteresis) {
if ((hysteresis < 0.0) || (hysteresis > 1.0))
throw new ||| egal Argunent Exception ("Hysteresis: " + hysteresis);
capacity = bufferSize;
buf fer = new byt e[capacity];
level = (int) (bufferSize * hysteresis);

The configuration methodsin Listing 9 allow you to configure the stream timeout and non-blocking mode. The timeout isthe
number of milliseconds after which blocked threads will automatically awaken; thisis necessary to break the potential deadlock
that could occur if one thread died. In non-blocking mode, an | nt er r upt edl OExcept i on will be thrown if athread would
block.

Listing 9. Pipe configuration
public void setTineout (int ns) {
this.tineout = ns;

}

public void setNonBl ocki ng (bool ean nonBl ocki ng) {
t hi s. nonBl ocki ng = nonBl ocki ng;

}

Listing 10 shows the reading methods, which al follow afairly standard pattern: we take a reference to the reading thread if we
don't already have one, then we verify the input parameters, check that the stream is not closed or that an exception is not pending,
determine how much data can be read, and finally copy the data from the internal ring buffer into the reader's buffer. The
checkedAvai | abl e() method, shown in Listing 12, automatically waits until some data are available or the stream is closed,
before returning.

Listing 10. Reading data
private byte[] one = new byte[1];

public int read () throws | OException {
/1 read 1 byte
int anbunt = read (one, 0, 1);
/1 return ECF / the byte
return (amount < 0) ? -1 : one[0] & Oxff;

}

publ i c synchroni zed int read (byte data[], int offset, int |ength)
throws | OException {
/! take a reference to the reader thread
if (reader == null)
reader = Thread. current Thread ();
/'l check paraneters
if (data == null) {
t hrow new Nul | Poi nt er Exception ();
} elseif ((offset < 0) || (offset + |length > data.length)
|| (length < 0)) { // check indices
t hrow new | ndexQut Of BoundsException ();
} else {
/1l throw an exception if the streamis closed
cl osedCheck ();
/1 throw any pendi ng exception
excepti onCheck ();
if (length <= 0) {
return O;
} else {
/1l wait for sone data to becone avail able for reading
int avail abl e = checkedAvai |l abl e (READER);
/1 return -1 on EOF
if (available < 0)
return -1;
/Il cal cul ate anbunt of contiguous data in pipe buffer
int contiguous = capacity - (readx % capacity);
/] calculate how nuch we will read this tine
int ampunt = (length > available) ? available : |ength;
i f (anmpbunt > contiguous) {
/! two array copies needed if data wap around the buffer end
System arraycopy (buffer, readx % capacity, data, offset,
conti guous) ;
System arraycopy (buffer, 0, data, offset + contiguous,
anount - contiguous);
} else {

/1 otherw se, one array copy needed
System arraycopy (buffer, readx % capacity, data, offset,
anmount) ;

}

/] update indices with anpunt of data read

processed (READER, anount);

/] return anount read

return anount;

}
}
}

publ i c synchroni zed | ong skip (long anbunt) throws | OException {
/] take a reference to the reader thread
if (reader == null)
reader = Thread. current Thread ();
/1 throw an exception if the streamis cl osed
cl osedCheck ();
/1 throw any pendi ng exception
excepti onCheck ();
if (ambunt <= 0) {
return O;
1} else {
/] wait for sone data to becone avail abl e for skipping
int avail able = checkedAvail abl e (READER);
/] return O on ECF
if (available < 0)
return O;
/1 cal cul ate how much we will skip this tinme
if (anpbunt > avail abl e)
amount = avail abl e;
/1 update indices with amount of data ski pped
processed (READER, (int) anount);
/'l return anmount ski pped
return anount;

The method shown in Listing 11 is called when data are read from or written to this pipe. It updates the relevant indexes and
automatically wakes a blocked thread if the pipe reachesits hysteresis level.

Listing 11. Updating indices

private void processed (boolean rw, int amount) {
if (rw == READER) ({
/1 update read i ndex with amount read
readx = (readx + amount) % (capacity * 2);
} else {
/Il update wite index with ambunt written
witex = (witex + anobunt) % (capacity * 2);

/1 check whether a thread is sleeping and we have reached the
/'l hysteresis threshold
if (sleeping & (available (!rw) >= level)) {
/'l wake sl eeping thread
notify ();
sl eepi ng = fal se;
}
}

ThecheckedAvai | abl e() method shown in Listing 12 waits until this pipe has space or data available (depending on ther w
parameter) and then returns the amount to the caller. Internally, this also checks that the stream is not closed, the pipe is not broken,
and so on.

Listing 12. Checking availability

publ i c synchroni zed int available () throws | OException {
/'l throw an exception if the streamis closed
cl osedCheck ();
/1 throw any pendi ng exception
excepti onCheck ();
/] determ ne how nuch can be read
int anount = avail abl e (READER);
/1 return O on EOF, otherw se the anmount readable
return (amount < 0) ? 0 : anount;
}

private int checkedAvail abl e (bool ean rw) throws | OException {
/1 always call ed from synchroni zed(this) method
try {
int avail abl e;
/] loop while no data can be read/witten
while ((available = available (rw) == 0) {
if (rw== READER) { // reader
/1 throw any pendi ng exception
excepti onCheck ();
} else { [/ witer
/1 throw an exception if the streamis closed
cl osedCheck ();
}
/1 throw an exception if the pipe is broken
br okenCheck (rw);
if (!nonBl ocking) { // blocking node
/'l wake any sl eeping thread
if (sl eeping)
notify ();
/'l sleep for tinmeout ms (in case of peer thread death)
sl eeping = true;
wait (timeout);
/1 timeout nmeans that hysteresis may not be obeyed
} else { // non-bl ocki ng npde
/1 throw an | nterruptedl CException
t hrow new | nt erruptedl OExcepti on
("Pipe " + (rw? "full" : "enpty"));
}

}

return avail abl e;
} catch (InterruptedException ex) {
/1 rethrow | nterruptedException as |nterruptedl OException
throw new | nt erruptedl OExcepti on (ex.get Message ());
}
}

private int avail able (boolean rw) {
/'l cal cul ate anpbunt of space used in pipe
int used = (witex + capacity * 2 - readx) % (capacity * 2);
if (rw=WITER) { // witer
/1 return amount of space available for witing
return capacity - used;
} else { /] reader
/1 return amount of data in pipe or -1 at ECF
return (eof & (used == 0)) ? -1 : used;

The methodsin Listing 13 close this stream; support is provided for the reader or the writer to close the stream. Blocked threads are
automatically awakened, and various other sanity checks are made.

Listing 13. Closing the stream

public void close () throws | CException {
/1 close the read end of this pipe
cl ose (READER);

}

private synchroni zed void cl ose (boolean rw) throws | CException {
if (rw== READER) { // reader
/'l set closed flag
cl osed = true;
} elseif (leof) { /] witer
/1 set eof flag
eof = true;
[/l check if data renmin unread
if (available (READER) > 0) {
/1 throw an exception if the reader has already cl osed the pipe
cl osedCheck ();
/1 throw an exception if the reader thread has died
br okenCheck (WRI TER);
}
}
/'l wake any sl eeping thread
if (sleeping) {
notify ();
sl eepi ng = fal se;
}
}

The methods shown in Listing 14 check the status of this stream. If an exception is pending, the stream is closed or the pipeis
broken (that is, the reader or writer thread is no longer alive) and an exception is thrown.

Listing 14. Checking stream status

private void excepti onCheck () throws | OException {
/1 throw any pendi ng exception
if (exception != null) {
| OExcepti on ex = excepti on;
exception = null;
throw ex; // could wap ex in a |ocal exception
}
}

private void cl osedCheck () throws | OException {
/1 throw an exception if the pipe is cl osed
if (closed)
t hrow new | CException ("Stream cl osed");
}

private void brokenCheck (boolean rw) throws | OException {
/'l get a reference to the peer thread
Thread thread = (rw == WRITER) ? reader : witer;
/1 throw an exception if the peer thread has died
if ((thread '= null) & !thread.isAlive ())
t hrow new | CException ("Broken pipe");

Listing 15 presents the method that is called when data are written into this pipe. It is broadly similar to the reading methods: we
first take a copy of the writer thread, then check that the stream is not closed and enter aloop copying datainto the pipe. As before,
this approach usesthe checkedAvai | abl e() method, which automatically blocks until there is available capacity in the pipe.

Listing 15. Writing data

private synchronized void witelnpl (byte[] data, int offset, int |ength)
throws | OException {
/l take a reference to the witer thread
if (witer == null)
witer = Thread. current Thread ();
/1 throw an exception if the streamis cl osed

if (eof || closed) {
t hrow new | CException ("Stream cl osed");
} else {
int witten = 0;
try {
/! loop to wite all the data
do {

/'l wait for space to becone available for witing
int available = checkedAvail abl e (WRI TER) ;
/] cal cul ate anpbunt of contiguous space in pipe buffer
int contiguous = capacity - (witex % capacity);
/1 cal cul ate how much we will wite this time
int ampunt = (length > available) ? available : |ength;
i f (anmpbunt > contiguous) {
/1l two array copies needed if space waps around the buffer end
System arraycopy (data, offset, buffer, witex % capacity,
conti guous);
System arraycopy (data, offset + contiguous, buffer, O,
anount - contiguous);
} else {
/1 otherw se, one array copy needed
System arraycopy (data, offset, buffer, witex % capacity,
anount) ;
}
/1 update indices with amount of data witten
processed (WRI TER, anount);
/Il update ampunt witten by this method
written += anount;
} while (witten < |l ength);
/1 data successfully witten
} catch (Interruptedl OException ex) {
/!l wite operation was interrupted; set the bytesTransferred
/'l exception field to reflect the anount of data witten
ex. bytesTransferred = witten;
/'l rethrow exception
throw ex;

One of the features of this piped-stream implementation is that the writer can set an exception that is passed on to the reader, as
shown in Listing 16.

Listing 16. Setting an exception

private synchroni zed void set Exception (| OException ex)
throws | OException {
[/l fail if an exception is already pending
if (exception != null)
t hrow new | CException ("Exception already set:
/1 throw an exception if the pipe is broken
br okenCheck (WRI TER);
/] take a reference to the pendi ng exception
thi s. exception = ex;
/'l wake any sl eeping thread
if (sleeping) {
notify ();
sl eepi ng = fal se;

+ exception);

}
}

Listing 17 presents the output stream-related code for this pipe. Theget Qut put St r ean{) method returns an

Qut put St r eam npl , which is an output stream that writes data into the internal pipe using the methods presented earlier. This
class extends Qut put St r eanEx, which is an extension to the output stream class that allows an exception to be set for the
reading thread.

Listing 17. The output stream

publ i c Qut put StreanEx get Qut put Stream () {
/1 return an QutputStream npl associated with this pipe
return new Qut put Stream npl ();

}

private class Qutput Stream npl extends Qutput StreanEx {
private byte[] one = new byte[1];

public void wite (int datum throws |OException {
/1l wite one byte using internal array
one[0] = (byte) datum
wite (one, 0, 1);

}

public void wite (byte[] data, int offset, int |ength)
throws | OException {
/'l check paraneters
if (data == null) {
t hrow new Nul | Poi nt er Exception ();
} else if ((offset < 0) || (offset + length > data.length)
| (length < 0)) {
t hrow new | ndexQut Of BoundsException ();
} else if (length > 0) {
/1 call through to witelnpl()
Pi pel nput Stream this.witelnpl (data, offset, |ength);
}
}

public void close () throws | CException {
/1 close the wite end of this pipe
Pi pel nput Stream t hi s. cl ose (WRI TER) ;

}

public void setException (| OException ex) throws | OException {
/] set a pending exception
Pi pel nput Stream t hi s. set Excepti on (ex);
}
}

/] static QutputStream extension with set Exception() nethod
public static abstract class CQutputStreanEx extends CQutput Stream {
public abstract void setException (| OException ex) throws | CException;

}
}

Using the new piped streams
Listing 18 demonstrates how to use the new piped streams to solve the problem from the previous article. Note that any exception
occurring in the writer thread can be just passed down the stream.

Listing 18. Using the new piped streams

public static |nputStream newPi pedConpress (final |nputStreamin)
throws | CException {
Pi pel nput St r eam source = new Pi pel nput Stream ();
final Pipel nputStream Qut put StreanEx sink = source. get Qut put Stream ();
new Thread () {
public void run () {
try {
&ZI PQut put St ream gzi p = new &ZI PQut put Stream (si nk) ;
Streans.io (in, gzip);
gzip.close ();
} catch (1 OException ex) {
try {
si nk. set Exception (ex);
} catch (1 OException ignored) {
}
}

}.start ();
return source;

Performance results
The performance of these new streams on a 800MHz Linux box running the Java 2 SDK, version 1.4.0, is shown in the following
table, along with the performance of the standard streams. The performance harnessis the same as | used in the previous article:

Piped streams

15K B: 21ms; 15MB: 20675ms
New piped streams

15K B: 0.68ms; 15MB: 158ms
Byte-array streams

15K B: 0.31ms; 15MB: 745ms
New byte-array streams

15KB: 0.26ms; 15MB: 438ms

Performance differences from the last article simply reflect the varying ambient load on my machine. As you can see from these
results, the new piped streams result in much better performance than the brute-force solution for large volumes of data; however,
they are still about twice as slow as the engineering solution we examined. Clearly, the overhead of using multiple threads within
modern Java virtual machinesis not nearly as great as before.

Conclusion

We've examined two sets of alternative streams to those of the standard Java API: Byt esQut put St r eamand

Byt esl nput St r eamare unsynchronized alternatives to the byte-array streams. Because the expected use cases for these classes
involves access by just asingle thread, the absence of synchronization is alegitimate choice. In practise, the reduction in execution
time of up to 40 percent is probably only marginally due to the elimination of synchronization; the majority of the performance
improvement is due to the elimination of unnecessary copying when providing read-only access. The second example,

Pi pel nput St r eam is an alternative to the piped streams; it uses arelaxed contract, improved buffer size, and array-based
operations to cut execution time by over 99 percent. In this case, unsynchronized code is not an option; the Java Language
Specification rules out reliable execution of such code, even though it is otherwise theoretically possible to implement a pipe with

minimal locking.

The byte-array and piped streams are the primary choices for streams-based intra-application communications. While the new 1/O
API provides some aternatives, many applications and APIs still rely on the standard streams, and the new 1/0 APl is not
necessarily much more efficient for these particular uses. Appropriately reducing the use of synchronization, effectively adopting
array-based operations, and minimizing unnecessary copying have produced dramatic results here, providing much more efficient
operations that directly fit into the standard streams framework. Taking these same steps in other areas of application development
can often produce similar performance improvements.

Resources

. Participate in the discussion forum on this article by clicking Discuss at the top or bottom of the article.

. Thefirst part of this series describes a framework that |ets an application efficiently read data from a source that only
supports writing data to an output stream.

. Download the source code discussed in this article. This code isfreely licensed under the terms of the GNU General Public
License.

. Read this hands-on introduction to Java /O from devel oper\Works.

. Learn about the new I/O APIsin the J2SE 1.4 guide.

. The|BM Developer Kit, Java 2 Technology Edition, Version 1.3 runs the piped-stream examples noticeably faster than the
Sun J2SE 1.4.0 on Merlin's system.

. The Java Language specification chapter Threads and L ocks offers excellent information on this tricky subject.
. JSR 133 is planning to further clarify this aspect of the Java platform.

. Brian Goetz's devel operWorks series Threading lightly provides additional insight into the practical issuesthat arisein
concurrent programming:

1 Part 1: "Synchronization is not the enemy " (July 2001) describes how the performance impact of uncontended
synchronization is not as great asiswidely believed.

o Part 2: "Reducing contention " (September 2001) describes techniques to reduce the impact of contended
synchronization on program performance.

o Part 3: "Sometimesit's best not to share" (October, 2001) examines Thr eadLocal and offerstips for exploiting its
power.

. You'll find hundreds of articles about every aspect of Java programming in the devel operWorks Java technology zone.

About the author

Merlin Hughesis a cryptographer and chief technical evangelist with the Irish e-security company Baltimore Technologies, and a
part time janitor and dishwasher; not to be confused with JDK 1.4. Based in New Y ork, New York (acity so nice, they named it
twice), he can be reached at merlin@merlin.org.

Ar8 @ =
Discuss ZIF email it!

javascript:void forumWindow()
http://www-106.ibm.com/developerworks/java/library/j-io1/
ftp://www6.software.ibm.com/software/developer/library/j-io2src.zip
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/315A3E2B03D5BC00862568BE0060309F?OpenDocument
http://java.sun.com/j2se/1.4/docs/guide/nio/
http://www-106.ibm.com/developerworks/java/jdk/
http://java.sun.com/docs/books/jls/second_edition/html/memory.doc.html
http://www.jcp.org/jsr/detail/133.jsp
http://www-106.ibm.com/developerworks/library/j-threads1.html
http://www-106.ibm.com/developerworks/library/j-threads2.html
http://www-106.ibm.com/developerworks/library/j-threads3.html
http://www-106.ibm.com/developerworks/java/?article=jr
http://www.baltimore.com/
mailto:merlin@merlin.org
javascript:void forumWindow()
ftp://www6.software.ibm.com/software/developer/library/j-io2src.zip
javascript:void newWindow()

What do you think of thisarticle?
OKiller! (5) O Good stuff (4) O So-so; notbad (3) O Needswork (2) O Lame! (1)

Send usyour commentsor click Discussto share your commentswith others.

[submit feedback |

IBM developerWorks: Java technology : Java technology articles dEVBIOpBer‘kS
About IBM | Privacy | Legal | Contact

http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/java/
http://www-105.ibm.com/developerworks/papers.nsf/dw/java-papers-bynewest?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

	ibm.com
	developerWorks: Java technology : Turning streams inside out, Part 2: Optimizing internal Java I/O

	LDDINMDEKGDGBOPFEMCLLFEPPDJPACAI:
	form1:
	x:
	f1: [dW]
	f2:

	f3:

	form2:
	x:
	f1: Turning streams inside out, Part 2: Optimizing internal Java I/O
	f2: Java
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-thankyou.html
	f4: Off
	f5:

	f6:

