
Advanced search

 IBM home | Products & services | Support & downloads | My account

IBM developerWorks : Java technology : Java technology articles

Turning streams inside out, Part 2: Optimizing internal Java I/O

Contents:
Synchronization issues

A better byte-array output
stream

A better byte-array input
stream

Using the new byte-array
streams

Better piped streams

Using the new piped
streams

Performance results

Conclusion

Resources

About the author

Rate this article

Related content:
Turning streams inside out,
Part 1

Introduction to Java I/O

Subscribe to the
developerWorks newsletter

Also in the Java zone:
Tutorials

Tools and products

Code and components

Articles

Replacing the byte-array and piped streams
Level: Intermediate

Merlin Hughes (merlin@merlin.org)
Cryptographer, Baltimore Technologies
September 2002

While the new Java I/O framework, java.nio, addresses most of the performance issues
with I/O support, it does not address all the performance needs of internal application
communications using byte-arrays and pipes. In this final article in a two-part series, Java
cryptographer and author Merlin Hughes develops a new set of streams that complement the
standard Java I/O byte-array and piped-stream classes, emphasizing performance as a design
goal. Share your thoughts on this article with the author and other readers in the discussion
forum on this article. (You can also click Discuss at the top or bottom of the article.)

In the first article in this series, you learned some different approaches to solving the problem of
reading data from a source that can only write out its data. Among the potential solutions, we
investigated use of the byte-array streams, the piped streams, and a custom framework that tackles
the problem directly. The custom approach was clearly the most efficient solution; however,
examining the other approaches was constructive in highlighting some problems with the standard
Java streams. In particular, the byte-array output stream does not provide an efficient mechanism to
provide read-only access to its contents, and the piped streams generally exhibit extremely poor
performance.

We'll address these issues in this article by implementing alternative classes that provide the same
broad capabilities, but with more of an emphasis on performance. To begin, let's briefly touch on the
issue of synchronization as it relates to I/O streams.

Synchronization issues
In general, I recommend avoiding the needless use of synchronization where there is no particular
need for it. Clearly, if a class will be concurrently accessed by multiple threads, then it needs to be
thread safe. However, there are many cases where concurrent access makes no sense, and
synchronization is a needless overhead. For example, concurrent access to a stream is inherently non-
deterministic -- you cannot predict which data will be written first, or which thread will read what
data -- and, as such, is rarely of any use. Imposing synchronization on all streams is thus a cost that
provides no practical benefit. If a particular application requires thread safety, that can be enforced
though the application's own synchronization primitives.

This is, in fact, the same choice that was made for the classes of the Collections API: by default, sets, lists, and so on are not thread
safe. If an application desires a thread safe collection, it can use the Collections class to create a thread safe wrapper around a
non-thread safe collection. Were it of any use, an application could use exactly the same mechanism to allow thread safety to be
wrapped around a stream; for example, OutputStream out = Streams.synchronizedOutputStream
(byteStream). See the Streams class in the accompanying source code for an example implementation.

Consequently, I have not used synchronization to provide thread safety for classes where I do not envision them being usable by
multiple concurrent threads. Before you adopt this approach in general, I recommend that you study the Threads and Locks chapter
of the Java Language Specification (see Resources) to understand the potential pitfalls; in particular, the ordering of reads and
writes is not guaranteed when synchronization is not employed, so apparently harmless concurrent access to unsynchronized read-
only methods could lead to unexpected behaviour.

A better byte-array output stream
The ByteArrayOutputStream class is a great stream to use when you need to dump an unknown volume of data into a

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-109.ibm.com/redirectdWPS.htm
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/java/
http://www-105.ibm.com/developerworks/papers.nsf/dw/java-papers-bynewest?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/
javascript:void forumWindow()
ftp://www6.software.ibm.com/software/developer/library/j-io2src.zip
javascript:void newWindow()
http://www-106.ibm.com/developerworks/java/library/j-io1/
http://www-106.ibm.com/developerworks/java/library/j-io1/
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/315A3E2B03D5BC00862568BE0060309F?OpenDocument
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=article
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=article
http://www-106.ibm.com/developerworks/java/
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bynewest?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/tools.nsf/dw/java-all-byname?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/tools.nsf/dw/java-uicomponents-bytitle?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/papers.nsf/dw/java-papers-bytopic?OpenDocument&Count=500
mailto:merlin@merlin.org
javascript:void forumWindow()
javascript:void forumWindow()
http://www-106.ibm.com/developerworks/java/library/j-io1/
ftp://www6.software.ibm.com/software/developer/library/j-io2src.zip

memory buffer. I use it frequently when I need to store some data for later re-reading. However, using the toByteArray()
method to obtain read access to the resulting data is quite inefficient because it actually returns a copy of the internal byte array.
For small volumes of data, this approach is of little concern; however, as volumes grow, it becomes needlessly inefficient. The
class has to copy the data because it cannot enforce read-only access to the resulting byte array. If it returned its internal buffer,
then the recipient would have, in the general case, no guarantee that the buffer was not being concurrently modified by another
recipient of the same array.

The StringBuffer class has already solved a similar problem; it provides a writable buffer of characters, and supports
efficiently returning read-only Strings that read directly from the internal character array. Because the StringBuffer class
controls write access to its internal array, it can copy the array only when necessary; that is, when it has exported a String and a
caller subsequently modifies the StringBuffer. If no such modification occurs, then no unnecessary copying will be
performed. The new I/O framework addresses this problem in a similar manner by supporting wrappers around byte-arrays that can
enforce appropriate access controls.

We can use this same general mechanism to provide efficient buffering and re-reading of data for applications that need to use the
standard streams API. Our example will present an alternative to the ByteArrayOutputStream class that can efficiently
export read-only access to the internal buffer by returning a read-only InputStream that reads directly from the internal byte
array.

Let's take a look at the code. The constructors in Listing 1 allocate an initial buffer to hold data written to this stream. This buffer
will automatically expand as needed to hold more data.

Listing 1. An unsynchronized byte-array output stream

package org.merlin.io;

import java.io.*;

/**
 * An unsynchronized ByteArrayOutputStream alternative that efficiently
 * provides read-only access to the internal byte array with no
 * unnecessary copying.
 *
 * @author Copyright (c) 2002 Merlin Hughes <merlin@merlin.org>
 */
public class BytesOutputStream extends OutputStream {
 private static final int DEFAULT_INITIAL_BUFFER_SIZE = 8192;

 // internal buffer
 private byte[] buffer;
 private int index, capacity;
 // is the stream closed?
 private boolean closed;
 // is the buffer shared?
 private boolean shared;

 public BytesOutputStream () {
 this (DEFAULT_INITIAL_BUFFER_SIZE);
 }

 public BytesOutputStream (int initialBufferSize) {
 capacity = initialBufferSize;
 buffer = new byte[capacity];
 }

Listing 2 shows the writing methods. These methods expand the internal buffer, if necessary, and then copy in the new data. When
expanding the internal buffer, we double its size and add the amount necessary to hold the new data; the capacity thus grows
exponentially to hold any necessary volume. For efficiency, if you know the expected volume of data that you will write, you
should specify a corresponding initial buffer size. The close() method just sets an appropriate flag.

Listing 2. The write methods

 public void write (int datum) throws IOException {
 if (closed) {
 throw new IOException ("Stream closed");
 } else {
 if (index >= capacity) {
 // expand the internal buffer
 capacity = capacity * 2 + 1;
 byte[] tmp = new byte[capacity];
 System.arraycopy (buffer, 0, tmp, 0, index);
 buffer = tmp;
 // the new buffer is not shared
 shared = false;
 }
 // store the byte
 buffer[index ++] = (byte) datum;
 }
 }

 public void write (byte[] data, int offset, int length)
 throws IOException {
 if (data == null) {
 throw new NullPointerException ();
 } else if ((offset < 0) || (offset + length > data.length)
 || (length < 0)) {
 throw new IndexOutOfBoundsException ();
 } else if (closed) {
 throw new IOException ("Stream closed");
 } else {
 if (index + length > capacity) {
 // expand the internal buffer
 capacity = capacity * 2 + length;
 byte[] tmp = new byte[capacity];
 System.arraycopy (buffer, 0, tmp, 0, index);
 buffer = tmp;
 // the new buffer is not shared
 shared = false;
 }
 // copy in the subarray
 System.arraycopy (data, offset, buffer, index, length);
 index += length;
 }
 }

 public void close () {
 closed = true;
 }

The byte-array extraction method in Listing 3 returns a copy of the internal byte-array. Because we cannot prevent the caller from
writing to the resulting array, we cannot safely return a direct reference to the internal buffer.

Listing 3. Converting to a byte-array

 public byte[] toByteArray () {
 // return a copy of the internal buffer
 byte[] result = new byte[index];
 System.arraycopy (buffer, 0, result, 0, index);
 return result;
 }

When methods provide read-only access to the stored data, they can safely and efficiently use the internal byte-array directly.

Listing 4 shows two such methods. The writeTo() method writes the contents of this stream to an output stream; it performs the
write operation directly from the internal buffer. The toInputStream() method returns an input stream from which the data
can be efficiently read. It returns a BytesInputStream, which is an unsynchronized alternative to
ByteArrayInputStream, that reads directly from our internal byte array. In this case, we also set a flag to indicate that the
internal buffer is now shared with the input stream. This is important to protect against this stream being modified while the
internal buffer is shared.

Listing 4. Read-only access methods

 public void writeTo (OutputStream out) throws IOException {
 // write the internal buffer directly
 out.write (buffer, 0, index);
 }

 public InputStream toInputStream () {
 // return a stream reading from the shared internal buffer
 shared = true;
 return new BytesInputStream (buffer, 0, index);
 }

The only method that can potentially overwrite shared data is the reset() method, shown in Listing 5, which empties this
stream. Therefore, if shared is true and reset() is called, we create a new internal buffer instead of just resetting the write
index.

Listing 5. Resetting the stream

 public void reset () throws IOException {
 if (closed) {
 throw new IOException ("Stream closed");
 } else {
 if (shared) {
 // create a new buffer if it is shared
 buffer = new byte[capacity];
 shared = false;
 }
 // reset index
 index = 0;
 }
 }
}

A better byte-array input stream
The ByteArrayInputStream class is ideal to use for providing streams-based read access to in-memory binary data.
However, it has two design features that cause me occasional desire for an alternative. Firstly, the class is synchronized; this, as I
have explained, is unnecessary for most applications. Secondly, it provides an implementation of the reset() method that, if
called prior to mark(), ignores the initial reading offset. Neither of these are flaws; however, they're not necessarily always
desirable.

The BytesInputStream class, shown in Listing 6, is an unsynchronized, and largely unremarkable byte-array input stream
class.

Listing 6. An unsynchronized byte-array input stream

package org.merlin.io;

import java.io.*;

/**
 * An unsynchronized ByteArrayInputStream alternative.
 *
 * @author Copyright (c) 2002 Merlin Hughes <merlin@merlin.org>
 */
public class BytesInputStream extends InputStream {
 // buffer from which to read
 private byte[] buffer;
 private int index, limit, mark;
 // is the stream closed?
 private boolean closed;

 public BytesInputStream (byte[] data) {
 this (data, 0, data.length);
 }

 public BytesInputStream (byte[] data, int offset, int length) {
 if (data == null) {
 throw new NullPointerException ();
 } else if ((offset < 0) || (offset + length > data.length)
 || (length < 0)) {
 throw new IndexOutOfBoundsException ();
 } else {
 buffer = data;
 index = offset;
 limit = offset + length;
 mark = offset;
 }
 }

 public int read () throws IOException {
 if (closed) {
 throw new IOException ("Stream closed");
 } else if (index >= limit) {
 return -1; // EOF
 } else {
 return buffer[index ++] & 0xff;
 }
 }

 public int read (byte data[], int offset, int length)
 throws IOException {
 if (data == null) {
 throw new NullPointerException ();
 } else if ((offset < 0) || (offset + length > data.length)
 || (length < 0)) {
 throw new IndexOutOfBoundsException ();
 } else if (closed) {
 throw new IOException ("Stream closed");
 } else if (index >= limit) {
 return -1; // EOF
 } else {
 // restrict length to available data
 if (length > limit - index)
 length = limit - index;
 // copy out the subarray
 System.arraycopy (buffer, index, data, offset, length);
 index += length;
 return length;

 }
 }

 public long skip (long amount) throws IOException {
 if (closed) {
 throw new IOException ("Stream closed");
 } else if (amount <= 0) {
 return 0;
 } else {
 // restrict amount to available data
 if (amount > limit - index)
 amount = limit - index;
 index += (int) amount;
 return amount;
 }
 }

 public int available () throws IOException {
 if (closed) {
 throw new IOException ("Stream closed");
 } else {
 return limit - index;
 }
 }

 public void close () {
 closed = true;
 }

 public void mark (int readLimit) {
 mark = index;
 }

 public void reset () throws IOException {
 if (closed) {
 throw new IOException ("Stream closed");
 } else {
 // reset index
 index = mark;
 }
 }

 public boolean markSupported () {
 return true;
 }
}

Using the new byte-array streams
The code in Listing 7 demonstrates how to use the new byte-array streams to solve the problem addressed in the first article
(reading the compressed form of some data):

Listing 7. Using the new byte-array streams

public static InputStream newBruteForceCompress (InputStream in)
 throws IOException {
 BytesOutputStream sink = new BytesOutputStream ();
 OutputStream out = new GZIPOutputStream (sink);
 Streams.io (in, out);
 out.close ();
 return sink.toInputStream ();
}

Better piped streams
The standard piped streams, while safe and reliable, leave much to be desired in terms of their performance. Several factors
contribute to this performance problem:

● The internal 1024-byte buffer is inflexible for different usage scenarios; it is just too small for large volumes of data.

● Array-based operations simply call through to an inefficient byte-by-byte copy operation. This operation is itself
synchronized, resulting in extremely heavy lock contention.

● If a pipe becomes empty or full and a thread is blocked on this state changing, the thread is awakened even if just a single
byte is read or written. In many cases, it will use this single byte and immediately block again, resulting in little useful work
being done.

The last factor is a consequence of the strict contract that the API provides. This strict contract is necessary for the streams to be
used in the most general possible applications. However, it is possible to come up with a more relaxed contract for a piped stream
implementation that sacrifices strictness for increased performance:

● Blocked readers and writers awaken only when the buffer's available data (in the case of a blocked reader) or free space (in
the case of a writer) reaches a certain specified hysteresis threshold or when an abnormal event, such as pipe closure, occurs.
This improves performance because threads awaken only when they can perform a reasonable amount of work.

● Only a single thread may read from the pipe, and a single thread may write to the pipe. Otherwise, the pipe cannot reliably
determine when the reader or writer thread has accidentally died.

The typical application scenario of an independent reader and writer thread is perfectly served by this contract; applications that
require immediate waking can use a zero hysteresis level. As we'll see later, an implementation of this contract can operate over
two orders of magnitude (one hundred times) faster than the standard API streams.

We could use one of several potential APIs to expose these piped streams: we could mimic the standard classes and explicitly
attach two streams; alternatively, we could expose a Pipe class from which we can extract the input and output streams. Instead,
we'll go with a simpler approach: create a PipeInputStream and then extract the associated output stream.

The general operation of these streams is as follows:

● We use an internal array as a ring-buffer (see Figure 1): A read and a write index are maintained in this array; data are
written to the write index and read from the read index; and the indices wrap around when they reach the end of the buffer.
Neither index can pass the other. When the write index reaches the read index, the pipe is full and no more data can be
written. When the read index reaches the write index, the pipe is empty and no more data can be read.

● Synchronization is used to ensure that the two co-operating threads see up-to-date values for the pipe's state. The Java
Language Specification is quite lenient in its rules on the ordering of memory accesses, which prevents the use of lock-free
buffering techniques.

Figure 1. A ring buffer

The code that implements these piped streams is presented in the following code listings. Listing 8 shows the constructors and
variables used by the class. This is an InputStream from which you can extract the corresponding OutputStream (code
shown in Listing 17). In the constructors you can specify the internal buffer size and a hysteresis level; this is the fraction of the
buffer's capacity that must become used or available before a corresponding reader or writer thread will be immediately awakened.

We maintain two variables, reader and writer, which correspond to the reader and writer threads. We use these to identify
when one thread dies while the other is still accessing the stream.

Listing 8. An alternative piped stream implementation

package org.merlin.io;

import java.io.*;

/**
 * An efficient connected stream pair for communicating between
 * the threads of an application. This provides a less-strict contract
 * than the standard piped streams, resulting in much-improved
 * performance. Also supports non-blocking operation.
 *
 * @author Copyright (c) 2002 Merlin Hughes <merlin@merlin.org>
 */
public class PipeInputStream extends InputStream {
 // default values
 private static final int DEFAULT_BUFFER_SIZE = 8192;
 private static final float DEFAULT_HYSTERESIS = 0.75f;
 private static final int DEFAULT_TIMEOUT_MS = 1000;

 // flag indicates whether method applies to reader or writer
 private static final boolean READER = false, WRITER = true;

 // internal pipe buffer
 private byte[] buffer;
 // read/write index
 private int readx, writex;
 // pipe capacity, hysteresis level
 private int capacity, level;
 // flags
 private boolean eof, closed, sleeping, nonBlocking;
 // reader/writer thread
 private Thread reader, writer;
 // pending exception
 private IOException exception;
 // deadlock-breaking timeout
 private int timeout = DEFAULT_TIMEOUT_MS;

 public PipeInputStream () {
 this (DEFAULT_BUFFER_SIZE, DEFAULT_HYSTERESIS);
 }

 public PipeInputStream (int bufferSize) {
 this (bufferSize, DEFAULT_HYSTERESIS);
 }

 // e.g., hysteresis .75 means sleeping reader/writer is not
 // immediately woken until the buffer is 75% full/empty
 public PipeInputStream (int bufferSize, float hysteresis) {
 if ((hysteresis < 0.0) || (hysteresis > 1.0))
 throw new IllegalArgumentException ("Hysteresis: " + hysteresis);
 capacity = bufferSize;
 buffer = new byte[capacity];
 level = (int) (bufferSize * hysteresis);
 }

The configuration methods in Listing 9 allow you to configure the stream timeout and non-blocking mode. The timeout is the
number of milliseconds after which blocked threads will automatically awaken; this is necessary to break the potential deadlock
that could occur if one thread died. In non-blocking mode, an InterruptedIOException will be thrown if a thread would
block.

Listing 9. Pipe configuration

 public void setTimeout (int ms) {
 this.timeout = ms;
 }

 public void setNonBlocking (boolean nonBlocking) {
 this.nonBlocking = nonBlocking;
 }

Listing 10 shows the reading methods, which all follow a fairly standard pattern: we take a reference to the reading thread if we
don't already have one, then we verify the input parameters, check that the stream is not closed or that an exception is not pending,
determine how much data can be read, and finally copy the data from the internal ring buffer into the reader's buffer. The
checkedAvailable() method, shown in Listing 12, automatically waits until some data are available or the stream is closed,
before returning.

Listing 10. Reading data

 private byte[] one = new byte[1];

 public int read () throws IOException {
 // read 1 byte
 int amount = read (one, 0, 1);
 // return EOF / the byte
 return (amount < 0) ? -1 : one[0] & 0xff;
 }

 public synchronized int read (byte data[], int offset, int length)
 throws IOException {
 // take a reference to the reader thread
 if (reader == null)
 reader = Thread.currentThread ();
 // check parameters
 if (data == null) {
 throw new NullPointerException ();
 } else if ((offset < 0) || (offset + length > data.length)
 || (length < 0)) { // check indices
 throw new IndexOutOfBoundsException ();
 } else {
 // throw an exception if the stream is closed
 closedCheck ();
 // throw any pending exception
 exceptionCheck ();
 if (length <= 0) {
 return 0;
 } else {
 // wait for some data to become available for reading
 int available = checkedAvailable (READER);
 // return -1 on EOF
 if (available < 0)
 return -1;
 // calculate amount of contiguous data in pipe buffer
 int contiguous = capacity - (readx % capacity);
 // calculate how much we will read this time
 int amount = (length > available) ? available : length;
 if (amount > contiguous) {
 // two array copies needed if data wrap around the buffer end
 System.arraycopy (buffer, readx % capacity, data, offset,
 contiguous);
 System.arraycopy (buffer, 0, data, offset + contiguous,
 amount - contiguous);
 } else {

 // otherwise, one array copy needed
 System.arraycopy (buffer, readx % capacity, data, offset,
 amount);
 }
 // update indices with amount of data read
 processed (READER, amount);
 // return amount read
 return amount;
 }
 }
 }

 public synchronized long skip (long amount) throws IOException {
 // take a reference to the reader thread
 if (reader == null)
 reader = Thread.currentThread ();
 // throw an exception if the stream is closed
 closedCheck ();
 // throw any pending exception
 exceptionCheck ();
 if (amount <= 0) {
 return 0;
 } else {
 // wait for some data to become available for skipping
 int available = checkedAvailable (READER);
 // return 0 on EOF
 if (available < 0)
 return 0;
 // calculate how much we will skip this time
 if (amount > available)
 amount = available;
 // update indices with amount of data skipped
 processed (READER, (int) amount);
 // return amount skipped
 return amount;
 }
 }

The method shown in Listing 11 is called when data are read from or written to this pipe. It updates the relevant indexes and
automatically wakes a blocked thread if the pipe reaches its hysteresis level.

Listing 11. Updating indices

 private void processed (boolean rw, int amount) {
 if (rw == READER) {
 // update read index with amount read
 readx = (readx + amount) % (capacity * 2);
 } else {
 // update write index with amount written
 writex = (writex + amount) % (capacity * 2);
 }
 // check whether a thread is sleeping and we have reached the
 // hysteresis threshold
 if (sleeping && (available (!rw) >= level)) {
 // wake sleeping thread
 notify ();
 sleeping = false;
 }
 }

The checkedAvailable() method shown in Listing 12 waits until this pipe has space or data available (depending on the rw
parameter) and then returns the amount to the caller. Internally, this also checks that the stream is not closed, the pipe is not broken,
and so on.

Listing 12. Checking availability

 public synchronized int available () throws IOException {
 // throw an exception if the stream is closed
 closedCheck ();
 // throw any pending exception
 exceptionCheck ();
 // determine how much can be read
 int amount = available (READER);
 // return 0 on EOF, otherwise the amount readable
 return (amount < 0) ? 0 : amount;
 }

 private int checkedAvailable (boolean rw) throws IOException {
 // always called from synchronized(this) method
 try {
 int available;
 // loop while no data can be read/written
 while ((available = available (rw)) == 0) {
 if (rw == READER) { // reader
 // throw any pending exception
 exceptionCheck ();
 } else { // writer
 // throw an exception if the stream is closed
 closedCheck ();
 }
 // throw an exception if the pipe is broken
 brokenCheck (rw);
 if (!nonBlocking) { // blocking mode
 // wake any sleeping thread
 if (sleeping)
 notify ();
 // sleep for timeout ms (in case of peer thread death)
 sleeping = true;
 wait (timeout);
 // timeout means that hysteresis may not be obeyed
 } else { // non-blocking mode
 // throw an InterruptedIOException
 throw new InterruptedIOException
 ("Pipe " + (rw ? "full" : "empty"));
 }
 }
 return available;
 } catch (InterruptedException ex) {
 // rethrow InterruptedException as InterruptedIOException
 throw new InterruptedIOException (ex.getMessage ());
 }
 }

 private int available (boolean rw) {
 // calculate amount of space used in pipe
 int used = (writex + capacity * 2 - readx) % (capacity * 2);
 if (rw == WRITER) { // writer
 // return amount of space available for writing
 return capacity - used;
 } else { // reader
 // return amount of data in pipe or -1 at EOF
 return (eof && (used == 0)) ? -1 : used;
 }
 }

The methods in Listing 13 close this stream; support is provided for the reader or the writer to close the stream. Blocked threads are
automatically awakened, and various other sanity checks are made.

Listing 13. Closing the stream

 public void close () throws IOException {
 // close the read end of this pipe
 close (READER);
 }

 private synchronized void close (boolean rw) throws IOException {
 if (rw == READER) { // reader
 // set closed flag
 closed = true;
 } else if (!eof) { // writer
 // set eof flag
 eof = true;
 // check if data remain unread
 if (available (READER) > 0) {
 // throw an exception if the reader has already closed the pipe
 closedCheck ();
 // throw an exception if the reader thread has died
 brokenCheck (WRITER);
 }
 }
 // wake any sleeping thread
 if (sleeping) {
 notify ();
 sleeping = false;
 }
 }

The methods shown in Listing 14 check the status of this stream. If an exception is pending, the stream is closed or the pipe is
broken (that is, the reader or writer thread is no longer alive) and an exception is thrown.

Listing 14. Checking stream status

 private void exceptionCheck () throws IOException {
 // throw any pending exception
 if (exception != null) {
 IOException ex = exception;
 exception = null;
 throw ex; // could wrap ex in a local exception
 }
 }

 private void closedCheck () throws IOException {
 // throw an exception if the pipe is closed
 if (closed)
 throw new IOException ("Stream closed");
 }

 private void brokenCheck (boolean rw) throws IOException {
 // get a reference to the peer thread
 Thread thread = (rw == WRITER) ? reader : writer;
 // throw an exception if the peer thread has died
 if ((thread != null) && !thread.isAlive ())
 throw new IOException ("Broken pipe");
 }

Listing 15 presents the method that is called when data are written into this pipe. It is broadly similar to the reading methods: we
first take a copy of the writer thread, then check that the stream is not closed and enter a loop copying data into the pipe. As before,
this approach uses the checkedAvailable() method, which automatically blocks until there is available capacity in the pipe.

Listing 15. Writing data

private synchronized void writeImpl (byte[] data, int offset, int length)
 throws IOException {
 // take a reference to the writer thread
 if (writer == null)
 writer = Thread.currentThread ();
 // throw an exception if the stream is closed
 if (eof || closed) {
 throw new IOException ("Stream closed");
 } else {
 int written = 0;
 try {
 // loop to write all the data
 do {
 // wait for space to become available for writing
 int available = checkedAvailable (WRITER);
 // calculate amount of contiguous space in pipe buffer
 int contiguous = capacity - (writex % capacity);
 // calculate how much we will write this time
 int amount = (length > available) ? available : length;
 if (amount > contiguous) {
 // two array copies needed if space wraps around the buffer end
 System.arraycopy (data, offset, buffer, writex % capacity,
 contiguous);
 System.arraycopy (data, offset + contiguous, buffer, 0,
 amount - contiguous);
 } else {
 // otherwise, one array copy needed
 System.arraycopy (data, offset, buffer, writex % capacity,
 amount);
 }
 // update indices with amount of data written
 processed (WRITER, amount);
 // update amount written by this method
 written += amount;
 } while (written < length);
 // data successfully written
 } catch (InterruptedIOException ex) {
 // write operation was interrupted; set the bytesTransferred
 // exception field to reflect the amount of data written
 ex.bytesTransferred = written;
 // rethrow exception
 throw ex;
 }
 }
 }

One of the features of this piped-stream implementation is that the writer can set an exception that is passed on to the reader, as
shown in Listing 16.

Listing 16. Setting an exception

 private synchronized void setException (IOException ex)
 throws IOException {
 // fail if an exception is already pending
 if (exception != null)
 throw new IOException ("Exception already set: " + exception);
 // throw an exception if the pipe is broken
 brokenCheck (WRITER);
 // take a reference to the pending exception
 this.exception = ex;
 // wake any sleeping thread
 if (sleeping) {
 notify ();
 sleeping = false;
 }
 }

Listing 17 presents the output stream-related code for this pipe. The getOutputStream() method returns an
OutputStreamImpl, which is an output stream that writes data into the internal pipe using the methods presented earlier. This
class extends OutputStreamEx, which is an extension to the output stream class that allows an exception to be set for the
reading thread.

Listing 17. The output stream

 public OutputStreamEx getOutputStream () {
 // return an OutputStreamImpl associated with this pipe
 return new OutputStreamImpl ();
 }

 private class OutputStreamImpl extends OutputStreamEx {
 private byte[] one = new byte[1];

 public void write (int datum) throws IOException {
 // write one byte using internal array
 one[0] = (byte) datum;
 write (one, 0, 1);
 }

 public void write (byte[] data, int offset, int length)
 throws IOException {
 // check parameters
 if (data == null) {
 throw new NullPointerException ();
 } else if ((offset < 0) || (offset + length > data.length)
 || (length < 0)) {
 throw new IndexOutOfBoundsException ();
 } else if (length > 0) {
 // call through to writeImpl()
 PipeInputStream.this.writeImpl (data, offset, length);
 }
 }

 public void close () throws IOException {
 // close the write end of this pipe
 PipeInputStream.this.close (WRITER);
 }

 public void setException (IOException ex) throws IOException {
 // set a pending exception
 PipeInputStream.this.setException (ex);
 }
 }

 // static OutputStream extension with setException() method
 public static abstract class OutputStreamEx extends OutputStream {
 public abstract void setException (IOException ex) throws IOException;
 }
}

Using the new piped streams
Listing 18 demonstrates how to use the new piped streams to solve the problem from the previous article. Note that any exception
occurring in the writer thread can be just passed down the stream.

Listing 18. Using the new piped streams

public static InputStream newPipedCompress (final InputStream in)
 throws IOException {
 PipeInputStream source = new PipeInputStream ();
 final PipeInputStream.OutputStreamEx sink = source.getOutputStream ();
 new Thread () {
 public void run () {
 try {
 GZIPOutputStream gzip = new GZIPOutputStream (sink);
 Streams.io (in, gzip);
 gzip.close ();
 } catch (IOException ex) {
 try {
 sink.setException (ex);
 } catch (IOException ignored) {
 }
 }
 }
 }.start ();
 return source;
}

Performance results
The performance of these new streams on a 800MHz Linux box running the Java 2 SDK, version 1.4.0, is shown in the following
table, along with the performance of the standard streams. The performance harness is the same as I used in the previous article:

Piped streams
15KB: 21ms; 15MB: 20675ms

New piped streams
15KB: 0.68ms; 15MB: 158ms

Byte-array streams
15KB: 0.31ms; 15MB: 745ms

New byte-array streams
15KB: 0.26ms; 15MB: 438ms

Performance differences from the last article simply reflect the varying ambient load on my machine. As you can see from these
results, the new piped streams result in much better performance than the brute-force solution for large volumes of data; however,
they are still about twice as slow as the engineering solution we examined. Clearly, the overhead of using multiple threads within
modern Java virtual machines is not nearly as great as before.

Conclusion
We've examined two sets of alternative streams to those of the standard Java API: BytesOutputStream and
BytesInputStream are unsynchronized alternatives to the byte-array streams. Because the expected use cases for these classes
involves access by just a single thread, the absence of synchronization is a legitimate choice. In practise, the reduction in execution
time of up to 40 percent is probably only marginally due to the elimination of synchronization; the majority of the performance
improvement is due to the elimination of unnecessary copying when providing read-only access. The second example,
PipeInputStream, is an alternative to the piped streams; it uses a relaxed contract, improved buffer size, and array-based
operations to cut execution time by over 99 percent. In this case, unsynchronized code is not an option; the Java Language
Specification rules out reliable execution of such code, even though it is otherwise theoretically possible to implement a pipe with

minimal locking.

The byte-array and piped streams are the primary choices for streams-based intra-application communications. While the new I/O
API provides some alternatives, many applications and APIs still rely on the standard streams, and the new I/O API is not
necessarily much more efficient for these particular uses. Appropriately reducing the use of synchronization, effectively adopting
array-based operations, and minimizing unnecessary copying have produced dramatic results here, providing much more efficient
operations that directly fit into the standard streams framework. Taking these same steps in other areas of application development
can often produce similar performance improvements.

Resources

● Participate in the discussion forum on this article by clicking Discuss at the top or bottom of the article.

● The first part of this series describes a framework that lets an application efficiently read data from a source that only
supports writing data to an output stream.

● Download the source code discussed in this article. This code is freely licensed under the terms of the GNU General Public
License.

● Read this hands-on introduction to Java I/O from developerWorks.

● Learn about the new I/O APIs in the J2SE 1.4 guide.

● The IBM Developer Kit, Java 2 Technology Edition, Version 1.3 runs the piped-stream examples noticeably faster than the
Sun J2SE 1.4.0 on Merlin's system.

● The Java Language specification chapter Threads and Locks offers excellent information on this tricky subject.

● JSR 133 is planning to further clarify this aspect of the Java platform.

● Brian Goetz's developerWorks series Threading lightly provides additional insight into the practical issues that arise in
concurrent programming:

❍ Part 1: "Synchronization is not the enemy " (July 2001) describes how the performance impact of uncontended
synchronization is not as great as is widely believed.

❍ Part 2: "Reducing contention " (September 2001) describes techniques to reduce the impact of contended
synchronization on program performance.

❍ Part 3: "Sometimes it's best not to share" (October, 2001) examines ThreadLocal and offers tips for exploiting its
power.

● You'll find hundreds of articles about every aspect of Java programming in the developerWorks Java technology zone.

About the author
Merlin Hughes is a cryptographer and chief technical evangelist with the Irish e-security company Baltimore Technologies, and a
part time janitor and dishwasher; not to be confused with JDK 1.4. Based in New York, New York (a city so nice, they named it
twice), he can be reached at merlin@merlin.org.

javascript:void forumWindow()
http://www-106.ibm.com/developerworks/java/library/j-io1/
ftp://www6.software.ibm.com/software/developer/library/j-io2src.zip
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/315A3E2B03D5BC00862568BE0060309F?OpenDocument
http://java.sun.com/j2se/1.4/docs/guide/nio/
http://www-106.ibm.com/developerworks/java/jdk/
http://java.sun.com/docs/books/jls/second_edition/html/memory.doc.html
http://www.jcp.org/jsr/detail/133.jsp
http://www-106.ibm.com/developerworks/library/j-threads1.html
http://www-106.ibm.com/developerworks/library/j-threads2.html
http://www-106.ibm.com/developerworks/library/j-threads3.html
http://www-106.ibm.com/developerworks/java/?article=jr
http://www.baltimore.com/
mailto:merlin@merlin.org
javascript:void forumWindow()
ftp://www6.software.ibm.com/software/developer/library/j-io2src.zip
javascript:void newWindow()

What do you think of this article?

Killer! (5) Good stuff (4) So-so; not bad (3) Needs work (2) Lame! (1)

Send us your comments or click Discuss to share your comments with others.

IBM developerWorks : Java technology : Java technology articles

 About IBM | Privacy | Legal | Contact

http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/java/
http://www-105.ibm.com/developerworks/papers.nsf/dw/java-papers-bynewest?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

	ibm.com
	developerWorks: Java technology : Turning streams inside out, Part 2: Optimizing internal Java I/O

	LDDINMDEKGDGBOPFEMCLLFEPPDJPACAI:
	form1:
	x:
	f1: [dW]
	f2:

	f3:

	form2:
	x:
	f1: Turning streams inside out, Part 2: Optimizing internal Java I/O
	f2: Java
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-thankyou.html
	f4: Off
	f5:

	f6:

