[All of dw [| |

IBM home | Products & services | Support & downloads | My account

IBM developerWorks: Open source projects | Java technology : Open source projectsarticles| Javadeyemperwfgrkg
technology articles

Plug a Swing-based development tool into Eclipse =

email it!
How to integrate a Swing editor into the Eclipse Platform Contents:
Introduction
Terry Chan (terrych@ca.ibm.com) Hypothetical Swing editor:
Software engineer, IBM Canada Ltd. Ed
October 2002 -
The basic concept
Learn how to integrate a stand-alone Swing-based editor into the Eclipse Platform asaplug- Editor integration
in. Using simple techniques, you can share resources between the Swing tool, the Eclipse Round-triooin
Platform, and various SWT widgets -- and these resources can communicate through mutual rouncnpping
awareness. Tool vendors who want to bring Eclipse-based development tools to market with a Preference pages
minimal amount of re-coding will also find this article helpful. Workbench avareness

Introduction Conclusion

The Eclipse Platform provides a robust set of services and APIs for tool development. It smoothes Resources
the integration between tools from disparate vendors, creating a seamless environment for different

About the author
types of development work.

Rate this article

One of the software components of the Eclipse Platform is SWT. Although not a core component set T

of the Platform, SWT isintegral because it provides a set of Java-based GUI widgets to the product
and plug-in developers. SWT is operating system independent and very portable, yet its underlying
JINI interface delivers native Platform look-and-feel and performance.

Working the Eclipse
Patform
Subscribe to the

Overall, SWT provides a good solution for developers and tool vendors who want to write plug-ins developerWorks newdl etter
that operate well in the Platform's various frameworks and that are visually appealing. However,

SWT suffers from its rather low level of interoperability with Java's Swing GUI widgets. For Alsoin the Open source
instance, Swing and SWT employ completely different event handling mechanisms. This difference proj ects zone:
often makes a GUI that is a hybrid of Swing and SWT unusable. Tutorias

Projects and patches

Some work has been done to provide an interface between Swing and SWT to give an acceptable
level of compatibility, such astheor g. ecl i pse. swt . i nt ernal . swt. wi n32. SWI_ AWl Code and components
utility class that enables a developer to embed a Swing widget into SWT. However, these methods Articles
are still experimental and not yet officially supported -- hence the "internal” moniker in the package ~—

name. Alsoin the Java zone;

Tutorials
This poor interoperability presents an unfortunate obstacle for both the Eclipse project and tool
vendors. Currently, alarge number of software development and test tools provide a user interface
written in Swing. Considerable time and investment from a vendor would be needed to port an Code and components
existing tool with a sophisticated Swing GUI to SWT. Despite all the inherent advantages offered by Articles
the Eclipse Platform, the poor interoperability between Swing and SWT makes the devel opment

Tools and products

effort less attractive.
This article shows you how to:

. Launch a Swing-based editor to edit any Javafile in the Eclipse Platform Workbench with the name "ThirdParty.java’
. Bring source code changes made in the Swing editor back into the Workbench

. Usethe Preference Page framework to control the attributes of the Swing editor

. Makethe Swing editor "Workbench-aware"

. Launch an SWT widget from the Swing editor

This article introduces some simple techniques to achieve the above, without using any unsupported APIs. No internal classes are
referenced, and all general plug-in rules are adhered to. To get the most out of these techniques, you should have basic knowledge

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-109.ibm.com/redirectdWPS.htm
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-124.ibm.com/developerworks/oss/
http://www-106.ibm.com/developerworks/java/
http://www-105.ibm.com/developerworks/papers.nsf/dw/opensource-papers-bynewest?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/papers.nsf/dw/java-papers-bynewest?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/papers.nsf/dw/java-papers-bynewest?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/
javascript:void newWindow()
http://www-106.ibm.com/developerworks/linux/library/os-plat/
http://www-106.ibm.com/developerworks/linux/library/os-plat/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=article
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=article
http://www-124.ibm.com/developerworks/oss/
http://www-124.ibm.com/developerworks/oss/
http://www-105.ibm.com/developerworks/education.nsf/dw/opensource-onlinecourse-bynewest?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/tools.nsf/dw/opensource-projects-byname?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/tools.nsf/dw/opensource-code-bytitle?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/papers.nsf/dw/opensource-papers-bynewest?OpenDocument&Count=10
http://www-106.ibm.com/developerworks/java/
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bynewest?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/tools.nsf/dw/java-all-byname?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/tools.nsf/dw/java-uicomponents-bytitle?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/papers.nsf/dw/java-papers-bytopic?OpenDocument&Count=500
mailto:terrych@ca.ibm.com

in writing plug-ins and using the Plug-in Development Environment, as well as access to the source code of the Swing-based
editor.

Hypothetical Swing editor: Ed
To simulate areal-world tools integration scenario, let's use a hypothetical Swing-based editor called "Ed". Here are some of Ed's
characteristics:

. EdisaSwing-based editor.

. Ed extends JFrame.

. Ed operates only on Javafiles with a specific name: ThirdParty.java.

. EdhasaJEditorPane and a JButton as private fields. The JEditorPane displays the source of ThirdParty.java. The
JButton saves the source code.

. Edisastand-alone Java application with amai n() method.

. Edisdesigned to be run from acommand prompt. It is not aware of the Eclipse Platform Workbench.

The basic concept

Due to the limitations of Swing and SWT interoperability, direct communication (such as event handling) between thetwo is
difficult to achieve. One way to achieve it, without using unsupported APIs or bending any plug-in development rules, isto avoid
embedding them into each other, and instead let them have their separate Frames. The plug-in class, or a Singleton utility class, will
handle the communication between them, as shown in Figure 1. For instance, a JButton on Ed could cause an SWT Shell to

appear, displaying some Workbench-specific attributes (such as Project References) of the edited ThirdParty.java.

Figure 1. Singleton utility class

Swing SWT
Editor Widgets

Singleton Utility Class

Editor integration
The primary goal of integration isto develop a plug-in that uses Ed as the default editor for any ThirdParty.javafilesfound in the
Workbench.

Preparing the plug-in project

In the Workbench, create a new plug-in project "org.eclipse.jumpstart.editorintegration”, and select the " Create plug-in using a
template wizard" option in the Create plug-in project wizard. Click Next. Check the option "Add default instance access" and click
Finish. The Workbench switches to the Plug-in Devel opment Perspective. A blank plug-in manifest file, as well asthe plug-in
classEdi t ori nt egr ati onPl ugi n, which extends Abst r act Ul Pl ugi n, is created automatically. A private static instance
of the plug-in class, as well as the getter method, is also be generated.

The plug-in manifest file editor should be open; if not, double-click plugin.xml to launch it.
The following libraries are needed for this plug-in. Add them to the plug-in project's Java Build Path:

. ECLIPSE_HOME/plugins/org.eclipse.core.resources/resources.jar
. ECLIPSE_HOME/plugins/org.eclipse.jdt.core/jdtcore.jar

. ECLIPSE_HOME/pluging/org.eclipse.jdt.ui/jdt.jar

. ECLIPSE_HOME/pluging/org.eclipse.swt/swt.jar

. ECLIPSE_HOME/pluginsg/org.eclipse.ui/workbench.jar

The plug-in manifest file

Because this plug-in operates only on Java files with the name ThirdParty.java, we need to specify an editor for them. In the plug-
in manifest file editor, switch to the Extensions tab, and add the extension point "Internal and External Editors". Set default to
"true", nameto "Ed - Swing Editor", filenamesto "ThirdParty.java’, and launcher to

"org.eclipse.jumpstart.editorintegration.EdL auncher". The source of the added extension point should look like Listing 1.

Listing 1. Adding an extension point

<ext ensi on poi nt="org. eclipse.ui.editors">
<edi t or
nanme="Ed - Swi ng Editor"
def aul t ="true"
i con="icons/thirdparty.gif"
fil enames="ThirdParty.java"
| auncher="org. ecl i pse.junpstart.editorintegrati on. EdLauncher"
i d="org.eclipse.junpstart.editorintegration.ed">
</ edi tor>
</ ext ensi on>

Ed is now the default editor for all ThirdParty.javafiles as shown in Figure 2.

Figure 2. Ed isthe default editor for all ThirdParty.java files
Sl summer
-} binvacation
=3 wacation
O ANAR T ircF ity

{5, JRE_LIE -Diwsa Mew b
50 To 4
Open

Cpen With
Cpen Type Hierarchy

v B Ed- Swing Editor

m Enterprise Bean Java Editor
Build Project [J] Java Editor

Rebuild Project
Refresh From Local [E] Default Text Editor

Fiefackar b Swstern Editor

Rename

Copy

Mave

Delete

add Bookmark

Seatch F o
ko i Rezour

Note: Be sure to include the icong/thirdparty.gif file, which is displayed as the default editor in the "Open With" menu for al
ThirdParty.javafiles.

Integrating Ed source code
Import the source code of Ed into the plug-in project. How Ed isinvoked is up to you. The plug-in class could contain an Ed as a
private field with a public getter method:

Listing 2. Ed asa private field
private Ed ed = nul|;

public Ed getEd()

{
if (ed == null)
{
ed = new Ed ();
}
return ed;

Alternatively, the plug-in class could return a separate instance of Ed for every ThirdParty.javafile launched. Y ou can implement
either approach in a Singleton utility class maintained and provided by the plug-in.

The editor launcher
Because the plug-in uses the extension point or g. ecl i pse. ui . edi t or s, it must provide the Eclipse Platform with an editor

launcher class as specified in the manifest file.

Createtheclassor g. ecl i pse. junpstart. editorintegration. EdLauncher toimplement the interface
| EditorLauncher (if thisinterface is not found, ensure the workbench.jar file isincluded in the Project Path; see Preparing the plug-

in project). Be sure to check the "Inherited abstract methods' option in the Wizard.

Every time a ThirdParty.javafile is double-clicked, the Eclipse Platform executes EdLauncher . open(| Fi | e) toinvokethe
default editor of thisfile type. The Platform passes the clicked artifact as an IFile to the method. In this case, IFile is a Java source
file, and so you could cast it as an |CompilationUnit.

Because Ed is not designed to work with JDT objects, you must extract the source content from the |CompilationUnit and put it
into Ed for viewing:

Edi t ori nt egrati onPl ugi n. get Defaul t (). get Ed() . get Edi t or Pane() . set Text
(1 Conpi | ati onUni t. get Source());

Edi t ori nt egrati onPl ugi n. get Defaul t (). get Ed() . show() ;

Upon execution of the show() method, Ed is displayed as a JFrame outside of the main Workbench window (see Figure 3). The
project name and package name of the edited ThirdParty.java are recorded by the plug-in. This information will be vital when you
attempt to save changes made in Ed.

F|gure3 The Swing editor is d|splayed outsde of theWorkbench

File Edit Source Refactor Navigate Search Project Run Frofile Webking Window Help

IS HaE[%-[0][%# %o [F&se]
iﬁ !m"_ e Enjfhlrr.i Party Swing Yalidator -|I:I|3<_| E
& a9 W © An
T
o I:" Eﬂitiigkage Source change detected in ThirdParty.java
[[1] ThirdParty. java e
#-{Th JRE_LIE - DriwsadSeal Project Mame: Editor Demo [References

oG JavaProject]
Package Mame: tesipackage

[_swe |

Souce of ThirdParty.java
package testpackage,

~
T @author lernch
*

*To change this generated comment edit the femplate variable "ty
acomment”.

*Window=Preferences*Java=Templates.

*To enable and disable the creation of ype comments go fo
*yWindow=Freferences=Java=Code Generation

*

public class ThirdParty {

] | v [

EEEEEESSD

[4]

Warning! The string helloString is not found or not set to "hello™.

al I T

Round-tripping: Bringing source changes back into the Workbench

A traditional editor would save source codein flat files, in a binary repository, or to a source code control system. As an editor, Ed
needs some means of saving the changes to the source code that it displays.

Ed has a"Save" button (a JButton) as described in The Swing editor: Ed. When pressed, theact i onPer f or ned() method is

called, and the Save button fires an event. An object that implements an event listener receives the event and performs the source
save operation.

Y ou may use the Singleton utility class (see The editor launcher) as the object that implements the event listener. Upon receiving

an event object from the Save button, the utility class extracts the source from Ed, and puts it into the corresponding Workbench
object. The actual work of saving to the file system is delegated to the Eclipse Platform.

Potentially, multiple files could have the same name in the Workbench. This is where the project and package name of
ThirdParty.java are useful. Thisinformation is stored by the plug-in. The exact implementation approach is up to you. Assuming
the editor stores the information, you could use the following code snippet in the utility class:

Listing 3. Managing file names

public void saveButtonPressed() {

try {
| Wor kspaceRoot root = ResourcesPl ugi n. get Wr kspace() . get Root () ;

| Project nyProj = root.getProject(getEd().getProjectnane());
| Fol der nyFol der = myProj . get Fol der (get Ed() . get PackageNane()) ;
| JavaEl enent nyPackageFragnent = JavaCore. creat e(nyFol der);

i f (myPackageFragment !'= null) {
| PackageFragment packageFrag = (| PackageFr agnent) nyPackageFr agnent ;

String sourceFronEd = get Ed() . get JEdi t or Panel(). get Text ();
| Conpil ationUnit icu = packageFrag. get ConpilationUnit("ThirdParty.java");

i cu. get Buf fer().setContents(sourceFromval i dator);

i cu.save(null, true);
}
el se {
System out . printl n("nmyPackageFragnment is null.");

} catch (Exception e) {
e.printStackTrace();

}

Reverse round-tripping
Listing 3 takes care of the "forward" round-tripping. "Backward" round-tripping is also needed to bring into Ed any changes made
in ThirdParty.java with the Eclipse Platform's JDT Java editor.

The utility class may implement theinterface or g. ecl i pse. j dt. cor e. | El enent ChangedLi st ener , which you can use
to track changes made to any |Elements, including | CompilationUnit. The method
el enent Changed(El enent ChangedEvent) iscalled when a source changeis introduced to a Javafile in the Workbench.

Y ou need to selectively filter out the |Element changes that do not concern the Ed plug-in. One way of filtering isto extract and
examinethe | JavaEl enent Del t a object fromthel El enent ChangedEvent argument. For instance, the following
statement filtersirrelevant source changes in the context of the Ed plug-in:

Listing 4. Filtering irrelevant sour ce changes

| JavaEl enentDelta delta = event.getDelta();

if (delta !'= null) {
i f(delta. getEl enent (). get El ement Nane() . equal sl gnoreCase(" ThirdParty.java")) {
//code to update Ed's editor panel.

}

For editors of non-Java artifacts, the | ElementChangedL istener cannot capture changes made in the Workbench. The Eclipse
Platform provides theinterfaceor g. ecl i pse. cor e. resour ces. | Resour ceChangeli st ener to handle changes made
to non-Java resources.

Preference pages

To provide users with rich, easy-to-use features, atool should provide configurable options accessible via startup parameters, or via
aGUI that is not part of the editor's core graphical interface. In the case of a plug-in for the Eclipse Platform, it is highly
recommended that these options be configured via the Platform's Preference Page framework (Window -> Preferences).

For example purposes, let's control the color of Ed as a configurable option using a Platform preference page.

Adding a preference page extension point in the plug-in manifest file
A preference page is defined as an extension point in the Eclipse Platform. To use it, add it in the plug-in manifest file editor, or put
in the following code into the plugin.xml:

Listing 5. Adding a preference page to the plugin.xml

<ext ensi on
i d="org.eclipse.junpstart.editorintegration. pref”
name="Ed Preference"
poi nt =" or g. ecl i pse. ui . pr ef erencePages" >
<page
nane="Swi ng Editor Preference Page"
cl ass="org. eclipse.junpstart.editorintegration. EdPref er encePagel"
i d="Swi ng Editor Preference Page"
</ page>
</ ext ensi on>

The preference page class

Preference pagesextend or g. ecl i pse. j face. pref erence. Pref er encePage. In thisexample, the simple preference
page consists of three slider bars at the maximum value of 255, representing the colors (red, green, and blue) of the

j ava. awt . Col or object of Ed.

Createtheclassor g. ecl i pse.junpstart. editorintegration. EdPref er encePagel inthe plug-in project as
specified in the manifest file. It must extend or g. ecl i pse. j face. pref erence. Pr ef er encePage and implement the
interfaceor g. ecl i pse. ui . | Wor kbenchPr ef er encePage.

The preference page presents a similar coding challenge as the editor launcher: How would JFace/SWT communicate with Swing?
Fortunately, the same approach applies. For instance, the per f or mAppl y() method may look like this:

Listing 6. The performApply() method

protected void performApply() {
int red = redSWSIider.getSel ection();
int green = greenSWS|ider.getSel ection();
int blue = bl ueSWrsli der. get Sel ecti on();

java. awt . Col or newCol or = new j ava. awt. Col or (red, green, blue);

Edi t ori nt egrati onPl ugi n. get Defaul t (). get Ed() . get Cont ent Pane() . set Backgr ound(
newCol or) ;

The plug-in should use the Platform's Preference Store mechanism to store the configured value, as would any other plug-ins. The
per f or mOk() method may look likethis:

Listing 7. The performOk() method

publ i ¢ bool ean performXk() {
get Pref erenceSt ore(). set Val ue("redVval ue", redSWSIider.get Sel ection();
get Pref erenceSt ore(). set Val ue("greenVal ue", greenSWS| i der.getSelection());
get Pref erenceSt ore() . set Val ue(" bl ueVal ue", bl ueSWISIider. get Sel ection());
return true;

Controlling the Swing editor's color from the preference pagesis shown in Figure 4.

Figure 4. Controlling the Swing editor's color from the prefer ence pages

#' Java - [BM WebSphere Studso Application
Fie Edt Source Refactor Blvigste Search

i~ I I
3 [1|

4 Preferences

|_5- B R & || q - !|£]_£ = Eﬂ::: Swing Walidator Preference Page
d marty Swing ¥alidator — ' ..ﬂ J _’J
| L
A 1 5

package tesipackage;

-~
* @author temch

" To changs Bis generated cornment editthe temglate vanable
aeamment:

TWindow=Preferences=Jara=Templales.

*To enable and disable he creation of type comments go 1o
*Window=FPreferances>Java=Code Genaralion.

=

public class ThirdParty |

1 Restore Dofants | dosly |

: oK careel |
| Packags Explorer [Herarchy

Workbench awareness

Because most editors were originally designed as stand-alone Java applications, they are oblivious to the existence of the
Workbench. They may not be able to handle some of the Platform's environment attributes, limiting the level of intimacy of the
editor's integration with the Platform. In order to provide users with a smoother and more coherent devel opment experience,
developers and plug-in vendors should seriously consider enhancing their existing Swing tools to be Workbench aware.

For instance, Ed was coded to work directly with file system-based Java files. Therefore, the concepts of the Platform's Java
Projects and Project References are foreign to it. In this section, we'll add a JButton to Ed to launch an SWT dialog box showing
the referenced projects of the edited ThirdParty.java. From the user's point of view, he clicks on a Swing widget, triggering an

SWT window that displays Workbench-specific information, giving the illusion that the Swing editor, SWT, and the Workbench
aretightly interacting with each other.

Enhancing the editor

Assuming you have access to the Ed source code, you can add additional Swing widgets for additional Workbench awareness
functionality. Add a JButton to the main content pane of the editor, which would then launch an SWT diaog. Set the text of the
JButton to "Referenced Project".

The Referenced Project button's event handling mechanism would work similar to that of the Save button's (see Round-tripping:
Bringing source changes back into the workbench). The plug-in utility class would listen for events from this button. Upon

receiving an event object fired by the Referenced Project Button, the utility class would perform the necessary operations to
retrieve the project reference info and display itin SWT.

Retrieving the project reference information

Before the SWT dialog can be displayed, the plug-in needs to find out which projectsin the Workbench are referenced by the
project that contains the edited ThirdParty.java. Thisisthe job of the plug-in class, and it may use a method as shown in Listing 8,
where the passed-in string argument is the name of the project:

Listing 8. Retrieving the project referenceinfo

private String[] getReferencedProjectArray(String arg) {
String[] projectNanmeArray = null;

try {
| Project[] referencedProjects =

Resour cesPl ugi n. get Wr kspace() . get Root (). get Pr oj ect (
ar g) . get Ref erencedPr oj ects();

i nt referencedProjectsLength = referencedProjects.| ength;

if (referencedProjectsLength == 0) {
proj ect NameArray = new String[1];

proj ect NameArray[0] = "none";
}
el se {
proj ect NanmeArray = new String[referencedProjectslLength];
for (int i=0; i < referencedProjectslLength; i++) {
proj ect NameArray[i] = referencedProjects[i].getNane();
}
}

return projectNaneArray;

} catch (Exception e) {
e.printStackTrace();
return null;

The SWT dialog
Exactly how the Project Referenced SWT dialog would look is up to the plug-in GUI designers. In this example, asimple SWT
Shell withaLi st object (to display the referenced projects) will suffice:

Listing 9. SWT Shell with a List object

public class SWProjectRef erenceFrane inpl ements Runnabl e {
private Shell shell;
private Display display;
Thr ead myThr ead;

public void run() {
open();
}

public void open() {
di splay = new Di spl ay();
shel | = new Shel | (di spl ay);
shel | . set Layout (new org. ecli pse. swt .| ayout. G i dLayout ());
shel | . set Text ("Proj ects Referenced - SWI Frane");
shel | . set Si ze(400, 400);
creat eLi st Goup();
shel | . open();

while (!shell.isDi sposed()) {
if (!display.readAndDi spatch()) {
Edi tori nt egrati onPl ugi n. get Defaul t (). get Ed() . repaint();
di spl ay. sl eep() ;
}
}
nyThread = null; // disposing the thread when the SWI wi ndow i s di sposed.

}

/1 Ot her nethods appear here ...

The method cr eat eLi st Group() preparestheLi st object, and setsits content to contain projectNameArray (see Retrieving
the project reference information).

Listing 10. Preparing the List object

private void createlistGoup() {
Goup listGoup = new G oup(shell, SW. NULL);
i st Group. set Layout (new Gri dLayout ());
i st Goup. set Layout Dat a(new Gri dDat a(Gi dDat a. GRAB_HORI ZONTAL |
Gri dDat a. HORI ZONTAL_ALI GN FI LL |
G i dDat a. VERTI CAL_ALI GN_FI LL));
listG oup.setText("listGoup"”);

List list = new List(listGoup, SW.V_SCROLL);
|ist.setltens(projectNaneArray);

Depending on how the SWT dialog is launched, you may need to execute the SWT window in a separate thread (as indicated by the
nmy Thr ead object in Listing 10) to avoid repainting problems in the Swing editor.

Launching an SWT frame from a Swing button is shown in Figure 5.

Figure5. Launching an SWT frame from a Swing button

d Party Swing Yaldator

e} ,
Wlles s|ade

= Tar Editor Demo
B testpackage
-) ThirdParky. jiva
& (3B JRE_LIE - D:\wsadSasled
& [a¢ JovaProject]

* X

- Projects Referenced - SWT Frame
st Grioup
[lavoProject] |

ternplate varable

*Window>Preferences=Java= Templates.
*To enable and disable the creation of bpe commeants go to
*Window=Freferences=Java=Code Genaration,

=

public class ThirdParty |
ni;: et

Conclusion

The techniques described here offer an interim solution that can help you quickly integrate Swing-based toolsinto the Eclipse
Platform. However, whenever possible possible, you should use tightly integrated SWT/JFace components over existing Swing
widgets. For instance, instead of using individual preference dialog frames to handle user preferences, an editor should use the
Eclipse Platform's Preference Page framework as the central entry point for configuring a plug-in.

Even though the conceptsin this article are relatively simple and easy to implement, do not leave the Swing widgets as permanent
fixturesin aplug-in. To harness and exploit al the services in the Eclipse project, you should gradually decrease the amount of
legacy Swing code in your plug-insin favor of various frameworks provided by the Eclipse project.

Resources

. For more background, read the eclipse.org article "How Y ou've Changed! Responding to resource changesin the Eclipse
workspace" by John Arthorne.

. Get an introduction to the Eclipse Platform and how it operatesin the article "Working the Eclipse Platform™ by Greg
Adams and Marc Erickson (developerWorks, November 2001).

. For advice on writing Eclipse plug-ins for the international market, read "Internationalizing your Eclipse plug-in". Y our
roadmap starts with a quick review of the goals and challenges of internationalization, followed by detailed instructions. An
added sidetrip isalook at how these steps were applied to the internationalization of the Eclipse Platform itself
(devel operWorks, June 2002).

. Then, to verify your trandated plug-in files, read "Testing your internationalized Eclipse plug-in", which includes strategies
for dealing with common errors -- and a download for a handy plug-in for comparing property files. This plug-in will help
your tranglation testers find errors more quickly (devel operWorks, July 2002).

. Takethe online devel operWorks tutorial " Developing and deploying plug-ins for WebSphere Studio” (short registration
required).

. Visit the eclipse.org Web site for more information on Eclipse.

About the author

Terry Chan is a Software engineer at IBM in Toronto, Ontario. He worked as an analyst for IBM Global Services, specializing in
0S/2 core dump analysis. He later joined the IBM Toronto Software Laboratory where he was a customer service analyst for
VisualAge for Java. In 2001 he joined the WebSphere Studio Application Developer (WSAD) Jumpstart team, whose primary goal
isto help 1SV sto create commercia offerings based on WSAD. Y ou can contact Terry at terrych@ca.ibm.com.

http://www.eclipse.org/articles/Article-Resource-deltas/resource-deltas.html
http://www.eclipse.org/articles/Article-Resource-deltas/resource-deltas.html
http://www-106.ibm.com/developerworks/linux/library/os-plat/
http://www-106.ibm.com/developerworks/opensource/library/os-i18n/
http://www-106.ibm.com/developerworks/opensource/library/os-i18n2/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=https://www6.software.ibm.com/reg/devworks/dw-wssplugin-i&origin=l
http://www.eclipse.org/
mailto:terrych@ca.ibm.com

email it!

What do you think of thisarticle?
OKiller! 5) O Good stuff (4) O So-so;nothad (3) O Needswork (2) O Lame! (1)

Comments?

| Submit feedback I

IBM developer Works: Open source projects | Java technology : Open source projectsarticles| dEVElDDEI"‘J\"DI’kS
Java technology articles

About IBM | Privacy | Lega | Contact

javascript:void newWindow()
http://www-106.ibm.com/developerworks/
http://www-124.ibm.com/developerworks/oss/
http://www-106.ibm.com/developerworks/java/
http://www-105.ibm.com/developerworks/papers.nsf/dw/opensource-papers-bynewest?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/papers.nsf/dw/java-papers-bynewest?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

	ibm.com
	developerWorks: Open source projects | Java technology : Plug a Swing-based development tool into Eclipse

	LBJLFJLJDLHLHPCAEPJLIONHDDPCDAGA:
	form1:
	x:
	f1: [dW]
	f2:

	f3:

	form2:
	x:
	f1: Plug a Swing-based development tool into Eclipse
	f2: Open source, Java
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-thankyou.html
	f4: Off
	f5:

	f6:

