CHAPTER
JDBC TuTORIAL

\A Simple JDBC Application
) Rrepaved Statement to lmprove Pevformance
\Svo\wsadftov\s with JDBC

\Xosiﬁov\ea\ Cuvsov UpAates

Every program has unique requirements for database access; some
need to browse a database, selecting a set of rows in order to allow
users to move forward and backwards through the set; other applica-
tions need to perform a series of updates to a set of related tables that
must be treated as a complete, atomic transaction, where multiple
rows in the update must be treated as a single row.

Some applications contain a fixed set of selection criteria for data,
while others require that parameters be provided at runtime. There are
yet other applications that may know nothing about the capabilities

79

80

of the database to which they are connected, so they must discover
the capabilities of the database. Demonstrating a single application
with JDBC cannot cover the full spectrum of functionality we refer-
ence here; a series of JDBC examples is required.

Java applications are now used primarily as applets; this more like-
ly than not represents the most common usage of JDBC applications
for the near future. But it is reasonable to expect that over time Java,
with its array of features, will be accepted as a general-purpose lan-
guage. Once it has been accepted, Java with JDBC will be used for a
variety of general-purpose applications such as CGIl programming,
reports, and data entry programs.

This tutorial demonstrates the use of JDBC first in a series of sim-
ple applications, then in an applet and CGI application. The simple
applications demonstrate the basics of JDBC usage: loading a
database driver, creating a Connecti on object, creating a
St at enent object, executing a SQL statement with the St at enent
object and returning a Resul t Set, and retrieving rows of data
using the Result Set object. Database access with JDBC will
always represent some variation of these calls and additional calls
as needed.

Code examples are also used to demonstrate JDBC usage with
applets. This represents a variation on the simple code example; with
applets, JDBC methods are usually called during button events to
retrieve and display data to the applet window

A very common application currently used with World Wide Web
HTML pages is the CGI application. The CGI example in this chap-
ter uses JDBC to retrieve data from a database; it demonstrates a CGl
application that receives a set of parameters, parses the parameters,
and returns data formatted as an HTML page.

One of the limitations of the current implementation of JDBC is
that a Resul t Set can only be reviewed in serial order—the cursor
cannot move backwards. An example demonstrated in this chapter
provides a solution that allows rows to be retrieved in any order.

The overall goal of the tutorial section is to demonstrate the use of
JDBC to program simple to moderately difficult database access.
Complete examples are used to provide a clear understanding of the
context of the application.

Tutorials are provided for the following topics:

e A Simple JDBC Application

e Use of the Prepared Statement
e Positioned Cursor Update

» Transaction Modes

e Java Applet

» Metadata Usage

e ResultSet Array

These examples are be explained in more detail in the following
sections.

A Simple JDBC Application

This simple tutorial demonstrates the use of JDBC to create a
Connect i on object and connect to the database; create a St at enent
object and execute a SQL statement using the St at enent object;
retrieve the results of the St at enent in a Resul t Set object; and to
display the data in the Resul t Set .

This example uses a class and a series of methods to

Create a database table
Insert data into the table
Select data from the table

> w N PE

Update rows in the table
5. Delete rows from the table

This list of database activities represents a broad spectrum of
database functions; most database access programs are required to
perform some or all of these functions.

Two types of SQL statements are demonstrated in this tutorial:
Data Definition Language (DDL) statements and Data Manipulation
Language (DML) statements. The DDL statements are used to create
a database table and an index; for JDBC purposes, these statements
are update statements executed with the execut eUpdat e method
because they do not return data. They do however, return an integer
value for the number of rows updated.

81

82

Use of the Prepared
Statement

Once stored for a statement, this process of parsing and optimizing
need not be repeated as long as the structure and database objects in
the statement do not change. Since the overhead of parsing and opti-
mizing a statement can be avoided during each execution of a SQL
statement, a prepared statement is more efficient than regular execu-
tion of a SQL statement.

A JDBC prepared statement allows parameters to be identified
within a SQL statement. The parameters are usually limited to those
values that vary from execution to execution of the statement.

The prepared statement examples presented here demonstrate the
use of a prepared statement to improve performance and allow
parameter substitution.

Positioned Cursor Upcdate

In many databases, you can create a cursor to maintain a pointer to a
specific row in a table. This pointer or position indicates where the
current row pointer is located. When the application needs to update
the table being read using the cursor, it uses the cursor to update the
record at the current record position; this is known as a positioned
cursor update.

The syntax for the positioned cursor update, if supported by the tar-
get database, is usually a SQL sel ect statement clause, which iden-
tifies the sel ect statement as a statement to be used to create a cur-
sor. Once the statement with the “f or updat e of ” clause has been
declared, the cursor name is retrieved to create the update statement.
The update statement SQL string includes the “where current of”
clause followed by the cursor name.

Transacition Modes

Database transaction modes enable varying degrees of transaction
integrity to be used during program execution. An application can
switch from a mode where uncommitted records can be read and

records updated by the application can be read by other users, to a
mode where only committed records can be read by an application
and no records that have been updated by an application can be read
by other users. This use of granularity in transactions allows for bet-
ter performance and increased concurrency when an application does
not need to limit it (such as a report). But more limited concurrency
may be necessary when an application needs to update several tables
within a transaction and commit the rows to the database as a trans-
action.

The transaction example demonstrates the use of transaction
modes by creating a database connection and then setting the isola-
tion mode for the database connection through the appropriate
Connecti on method. The JDBC API does not provide an explicit
“begin work” statement. Using the “conmi t wor k” statement, all cur-
rent database transactions from the session are sent to the database
when the statement is executed.

This example executes the comm t Connect i on method to commit
the current updates to the database. A series of statements is then exe-
cuted followed by another commit method invocation to commit the
transaction to the database. Should the transaction fail due to some
error, the cat ch code block contains ar ol | back method call to roll
back the database to a current state. One of the current shortcomings
of the JDBC interface is that it does not provide a means of scrolling
through a Resul t Set both forward and backward; this capability is
known as scroll cursors. This feature is useful for a database browse
application for which the user must enter selection criteria and then
move backwards and forwards through the returned set of rows

The solution to this problem is to store the Resul t Set in a Java
Vect or object. The Vect or has the ability to grow dynamically and
provides the ability to address a specific element. The result set array
example demonstrates this capability.

Java Applet

The Java applet currently represents one of the principal uses of the
Java language. A Java applet can be downloaded off the Internet and
run through a browser. This capability has been a large part of the
reason for the incredible popularity of the Java language.

83

84

A Java applet that can access a database is a powerful programming
tool. This application is platform-independent and, when placed at a
single location, can be distributed to multiple client computers by
simply being downloaded as a Java applet through a link in the HTML
page.

But a Java applet run through a browser is currently subject to cer-
tain security restrictions depending on the browser being used. For
instance, a Java applet that has been downloaded cannot access any
local files on the client machine. An application that wants to create
a Microsoft Access table and insert rows into the table would fail as a
downloaded applet if the Microsoft Access database builds files on
the local machine.

The example shown here uses a Microsoft Access database that
resides on the local machine. It runs successfully using the Sun
appl et vi ewer application where security is relaxed. It does not run
using the more restrictive Netscape browser.

This example will first display an input form to the application win-
dow. Using the buttons available in this window, the user can browse
the data available in the database. Search criteria can be entered and
then used to retrieve rows from the database. Users can optionally
move forward or backwards through the ResultSet by pressing but-
tons in the application window.

CGl Application

In today’s world of World Wide Web/Internet application program-
ming, CGI applications are ubiquitous. While use of JDBC in applets
can eliminate the need for many of these CGI programs, security
restrictions and performance improvements could still make CGI pro-
gramming a viable alternative. And Java, as a flexible general-purpose
language, could fill this role.

If it is desirable to have the applet or a HTML page connect to a
database on a server other than the Internet server, there are a num-
ber of good reasons why you would not want to expose that machine
to the Internet and would prefer to have the HTTP server process and
manage the connection.

In order to connect to this machine, a third-tier application is need-
ed as a middle tier between the client applet and the database server.
A CGI application is a viable approach to programming this third tier.

Such a CGI application can receive a request, retrieve the data, and
then format the data for return as an HTML page. The CGI tutorial
application demonstrates a Java program that could provide output
for such a CGI application.

Metadata Usage

There is a rich supply of metadata methods available in JDBC. An
application can use these methods to discover information about the
database to which it is connected—a task that could be a requirement
for a Java applet that needs to connect to multiple databases. These
examples demonstrate the use of many of the metadata functions
available in JDBC.

ResultSet Array Example

One of the limitations of the current release of JDBC is that result sets
can only be retrieved in a serial fashion. The Resul t Set methods
only retrieve the next row; the previous row cannot be retrieved.
Using a technique that stores retrieved rows in an internal list (a Java
Vect or), data can be retrieved for the current row, the previous row,
and for a specific row in the result set. This technique is demonstrat-
ed in the Resul t sSet array example and the three-tiered application
example.

Basic JDBC Programming

This chapter presents the basic steps involved in creating JDBC
programs. The first example in this chapter demonstrates the basic set
of calls required to use JDBC with Java. These steps are:

Load driver

Create connection

Create statement

Execute statement and return Resul t Set or result count
Iterate Resul t Set if returned

o s wbdPR

85

86

The use of JDBC usually involves some combination of these calls in
addition to other calls to metadata or transaction control methods. The
calls listed here must be made in sequence—you must have a
Connect i on object before a St at enent object can be created, and you
must have a Statement object before a SQL statement can be executed.

Results are returned in a Resul t Set , the JDBC equivalent of a cur-
sor. The JDBC Resul t Set provides methods for iterating the results
and retrieving individual columns. Specific methods are used to
retrieve specific data types. In the event an update is executed, an
integer result count is returned.

The Resul t Set retrieved contains, as the name implies, the set of
results retrieved by the query. These results may be iterated, but only
sequentially; there is no capability to move backwards through the
result set or to move a specific set of positions. A work-around for this
limitation is demonstrated later in this section.

The design of JDBC has kept methods and their arguments sim-

\ ple. To reduce the number of parameters to be passed to

Neke | Methods, additional methods were added to span the func-

tionality needed. So, instead of designing a method with three

parameters, one that would indicate the call type and two others that may

or may not be needed depending on the call type, JDBC developers
would create three separate methods.

To discover some basic information about the Result Set, a
Resul t Set metadata object must be obtained. This metadata object
will provide information such as the number of columns in the
Resul t Set , the data type of the columns, and the size and precision
of the column. As some of the examples in this chapter demonstrate,
it is possible to convert the basic data types from the Resul t Set to a
string and display or manipulate the data in that format.

If you know and are familiar with the database being used,

\ then metadata information probably won’'t have to be
Nete | Tetrieved. In situations where this information is not known,
then the database metadata methods are available. Any
application that can possibly connect to databases from different
database vendors potentially needs metadata information. Such an
application might be a general-purpose database query tool that could
attach to either an Informix, Oracle, or Sybase database using JDBC

drivers. This application would need to discover the database to which
it was connected, the version of the database product, and potentially
the specific capabilities supported in that version. All of this information
is supplied by database metadata methods.

To discover information about the database or the result set, a meta-
data object can be instantiated using a Dat aBaseMet aDat a object or
a Resul t Set Met aDat a object. These objects provide information
on the database, data types supported, or the number of columns
retrieved and their data types. It is not uncommon to retrieve some
metadata information about the database or the result set as is demon-
strated in the examples provided here.

Basic JDBC Steps

The following sections outline the basic steps necessary to create and
manage a database connection using JDBC. A specific set of methods
must be invoked each time a database connection is made and data is
retrieved.

Load Driver

The first step in using JDBC is to load the JDBC-ODBC bridge driv-
er. This is usually accomplished using the f or Nane static method of
the d ass object (which is part of the base Java system). The call is
made as follows:

d ass. forName ("sun.jdbc. odbc. JdbcCQdbcDriver");

When this call is made, the Java system searches for the class
requested and loads the driver. A class descriptor is returned by this
method, but because it is not needed, it is ignored.

Create Connection

The loading of the JDBC database driver does not connect to the
database; it merely creates an environment in the program where this
can be done. Before any database-specific SQL statements can be

87

88

executed, a connection must be established to the database. This is
accomplished through a call to the Dri ver Manager get Connecti on
method to find a specific driver that can create a connection to the
URL requested.

The Driver Manager searches through registered drivers until
one is found that can process the database URL that was specified.
If a driver cannot be found, an exception is thrown and code exe-
cution will not continue for that method. Code that follows this
statement can therefore assert that no exception was thrown and a
connection has been successfully established. The call is made as
follows:

String url
Connecti on con

L)

"j dbc: odbc: nsaccessdb”;
Dri ver Manager . get Connection (url,

In this example, the get Connecti on method is invoked with a
String containing the URL for the database and two additional
St ri ng parameters, one for the user name and one for the user pass-
word.

The familiar universal resource locator (URL) is used to sup-
\ ply the naming system for the database resource to be load-
nete | €d. The format of the URL name is:

j dbc: subpr ot ocol : subnane

where subprotocol indicates the access method used in addition to
JDBC and the subname is a name that has significance for the subproto-
col being used.

In this case, the JDBC-ODBC bridge is being used and ODBC is the
subprotocol, the protocol being used as a bridge to provide database
connectivity. The subname in this case is the data source name for
the ODBC connection. In this example, the data source name is
nmsaccessdb, alocal client Microsoft Access database. The specifics
of the database name and location are mapped through the ODBC driv-
er facilities provided.

Create Statement

In order to interact with the database, SQL statements must be exe-
cuted. This requires that a St at enent object be created to manage the
SQL statements. This is accomplished with a call to the Connect i on
class cr eat eSt at ement method as follows:

Statenment stnt = con.createStatenent();

This call creates a St at enent object using the established database
connection. The St at enent class provides methods for executing SQL
statements and retrieving the results from the statement execution.
Note that result sets (or cursors) are not part of the St at emrent class
but are represented through a separate class, the Resul t Set class.

Execute SQL Statement and Return ResultSet

The SQL St at enent object does not have a specific SQL statement
associated with it (unlike the Pr epar edSt at ement superclass, which
does). The SQL statement to execute is determined when the call to
execut eQuery is made, as follows:

String gs = "select * fromorders";
ResultSet rs = stnt.executeQery(gs);

This call sends the query to the database and returns the results of
the query as a Resul t Set . Should an error be generated during the
execution of the query, an exception is generated and caught using the
catch code block. Successful execution of the execut eQuery moves
control to the next line of code following the statement, which in this
example begins iterating the query results.

Iterate ResultSet

The Resul t Set represents the collection of results from the query.
The Resul t Set class contains methods that can be used to iterate
through these results in a serial fashion. First, you must make a call to
the next method in order to position the pointer (or cursor) before
the first element of the result set, as follows:

bool ean nore = rs.next();

89

90

The call to the next method returns a bool ean value. The bool ean
value of true indicates that the call was successful and the pointer is
positioned, thus there is data to retrieve. A bool ean value of false
indicates that the call was unsuccessful and there are no rows to
retrieve. Because it is not an error to execute a SQL select statement
that returns no rows, this first call to the next method reveals whether
or not the query returned any rows—a value of false would indicate
no rows have been retrieved.

Next, a whi | e loop is executed to step through the results in the
Resul t Set . The loop control is the boolean variable nor e returned
by the first call to the next method. As long as this value is true, the
loop continues to execute.

Within the loop, the value of the first column of the result set is dis-
played and the next method is called to position the pointer to the
next row. If the next method returns false, then the loop does not
continue execution and control is passed to the statement after the
end of the whi | e loop, as follows:

while (nore) {

Systemout.println("Col1: " +
rs.getint("coll"));

nore = rs. next();

}

The complete code for the simple select program is shown in
Program 4.1.

Program 4.1 Selectl.java
i mport java.sql.*;
inport java.io.*;
class Selectl {
public static void main(String argv[]) {

try {

Cl ass.forNane ("jdbc. odbc. JdbcGdbcDriver");

continued

String url = "jdbc: odbc: nsaccessdb";

Connection con = DriverManager . get Connection (url, "",

")

String gs = "select * froml oadtest";
Statenment stmt = con.createStatenment();
ResultSet rs = stnt.executeQery(gs);
bool ean nmore = rs. next();
while (more) {
Systemout.printin("Col 1. " +
rs.getlnt("coll"));

nore = rs.next();

catch (java.l ang. Exception ex) {

[/ Print description of the exception.
Systemout.println("** Error on data select. ** ");
ex. print StackTrace ();

A Dynamic SQL Select Program

The previous program used a specific SQL sel ect statement to
retrieve rows and display a single column of data from the database
table. The following example presents a more generic approach to
processing a SQL sel ect statement. The program accepts a single
command line argument: the name of the table to query. It uses this
table name to build a query for all the columns and all the rows in the
specified table. The query is executed and the results are displayed to
the terminal screen.

Because the query is built at runtime, the number and names of
the columns are not known when the program is compiled. This

91

92

information must be determined by retrieving metadata informa-
tion on the Resul t Set using the Resul t Set Met aDat a object for
the Resul t Set returned by the query. This example does not deal
with the problem of determining the data type of the column

)

The wext method and Adata vetvieval
// ———

Note that calls to the Resul t Set next
wmethod Ao ot veturm data. They wmevely posi-
tou the poiter to the next vow n the vesult
set. Successive calls to the appropriate “get”
wmethod for the data types of the columus
must be made to retvieve the Aata (Pov |
exawple, get I nt,get String,
get Nuneri c). The programamer must know
the Aata types of the columus amad call the
covvect method. Altevnatively, if simple Aisplay
of Aatan is vequived omd the prograwmmer Aoes

(which is easily available with the get Type Resul t Set Met aDat a
method) but simply treats each column as a Java Stri ng and dis-
plays the data in the column as returned by the get String
Resul t Set method. The steps used in executing this program are
as follows:

Load driver and get database connection

Retrieve table name from command line argument
Build sel ect statement

Create st at enent object and execute SQL statement
Create a Resul t Set Met aDat a object

Traverse the Resul t Set

o g A e

Each of these steps are detailed in the following sections.

Load Driver and Get Database Connection

The database driver is loaded and the connection is made as shown
in the previous example. The same ODBC data source is used for this
connection, as follows:

O ass. forNane ("sun.jdbc.odbc. JdbcCQdbcDriver");
String url = "jdbc: odbc: nsaccessdb”;
Connection con = DriverManager. get Connection (

url, "t

The f or Name method is used to load the JDBC-ODBC bridge class.
The URL string is created with reference to the ODBC MicroSoft-
Access database used in the example. This string is then passed as a
parameter to the get Connect i on method of Dri ver Manager , which
then returns the Connect i on object.

Retrieve Table Name from
Command Line Argument

This program retrieves the table name to query as a command line
argument. This code determines only whether or not an argument
has been passed to the program. A Stri ng variable is declared and
initialized to the value of a valid table name for the database. If an

93

94

argument has been passed to the program, it is stored in a String
variable named t abl eNane as shown in the following snippet. If an
argument has not been passed to the program, the variable retains the
original value of the table name.

String tabl eNane = "l oadtest";
if (argv.length > 0)
tabl eNane = argv[O0];

Build Select Statement

The SQL sel ect statement is built by concatenating a sel ect col-
umn list clause with the table name stored in the t abl eNane variable.
The code for this is as follows:

String gs = "select * from" + tabl eNane;

No wher e clause is appended to the SQL sel ect statement; the
query will retrieve all rows from the database table.

Create Statement Object and Execute
SQL Statement

Then the St at enent object is created using the Connect i on object
and the SQL statement is executed using the execut eQuer y method,
as follows:

Statenment stnt = con.createStatenent();
ResultSet rs = stnt.executeQuery(gs);

The execut eQuery method returns a Resul t Set, which is then
processed as shown in the following steps.

Create a ResultSetMetaData Object

A Resul t Set Met aDat a object is then created. This is used to
determine the characteristics of the Result Set that has been
retrieved. The Resul t Set get Met aDat a method is used to retrieve
this object, as follows:

Resul t Set Met aData rsnmd = rs. get Met aDat a() ;

Traverse the ResultSet

The code used to retrieve and display the Resul t Set follows. First
an integer index variable is created and the next method is called for
the Resul t Set . Calling the next method positions the pointer for the
Resul t Set at the first result row and determines whether or not there
are any rows to retrieve. The bool ean return value from the next
method (a Java bool ean variable named nor e) is then used to con-
trol a whi | e loop, as follows:

int n=0;
bool ean nore = rs.next();
while (nore) {
for (n=1; n <= rsml getColumCount (); n++) {
Systemout.println("Col " + n +

" Nanme: " + rsnd. get Col umName(n) +
"value: " + rs.getString(n));

}
}

For each iteration of the whi | e loop, all columns in the row are
retrieved and displayed. This is accomplished using an inner f or loop
that iterates up to the count returned by the get Col utmCount
method of Resul t Set Met aDat a. For each column value returned, a
call to the Resul t Set Met aDat a get Col utmNane method returns the
column name. Each column value is returned as a St r i ng value using
the get St ri ng method of the Resul t Set class.

The complete code for the dynamic SQL sel ect program is shown
in Program 4.2.

Program 4.2 selectgen.java
i nport java.sql.*;
i mport java.io.*;

cl ass Sel ect Gen {

public static void main(String argv[]) {

try { -
continued

i

96

— —

Il » I.! I

.‘Iq
iI

d ass. forNanme ("] dbc. odbc. JdbcQdbeDri ver");

String url = "jdbc: odbc: nsaccessdb”;
Gonnection con = Driver Manager . get Connecti on (

url, """, "");
String tabl eNane = "l oadtest";

if (argv.length > 0)
t abl eNane = argv[O0];

String gs = "select * from" + tabl eNang;
Statenment stmi = con. createStatenent();

ResultSet rs = stnt.executeQery(gs);
Resul t Set Met aData rsnmd = rs. get Met aDat a() ;

int n=0;
bool ean nmore = rs. next();
while (nmore) {
for (n=1;, n<=
rsmd. get Col utmGCount (); n++) {

Systemout.printin("Col " + n +
" Nane: " +
rsmd. get Col utmName(n) +
" value: " +
rs.getString(n)
)
}
}
}

catch (java.l ang. Exception ex) {

continued

/1 Print description of the exception.
Systemout.println("** Error on data select. ** ");
ex. print StackTrace ();

}

Prepared Statement

Each SQL query presented to the database engine must be pro-
cessed before data can be retrieved or updated. The database engine
must determine whether or not the SQL statement presented to it is
syntactically correct, whether the database objects referenced exist
in the engine, and whether the data type conversions necessary can
be performed. These basic operations are known as parsing the
SQL statement. In addition to parsing the query, the database
engine must make decisions about what the best access path is to
process the SQL statement. This process is known as optimizing
the SQL statement. Both of these operations require a certain
amount of overhead in the database engine. If a query is to be per-
formed many times with the same structure, then it may be better to
perform these operations once and merely substitute parameters
for the portions of the query that change with each successive
execution. This can be accomplished with JDBC using the
Pr epar edSt at enent class.

The Pr epar edSt at enent class allows a SQL statement to be pre-
pared with place-holders for the parameters. These place-holders are
usually the “?” character and they can only be used to create param-
eters for certain portions of the SQL statement. Many databases do
not allow database objects (table and column names) to be substitut-
ed with parameters.

(This does not preclude creating queries at runtime where the table
names and column names are not known. This can still be accom-
plished by building a String with the query and using the
execut eQuery or execut eUpdat e method of the St at enent class
to execute the SQL statement.)

97

98

Using Prepar edSt at enent for data retrieval offers performance
improvements over queries executed with the St at enent class meth-
ods. The code shown in this example was used to test this claim. A
version of this program (included at the end of this section) contains
the same SQL statement execution but instead of preparing the state-
ment, the SQL statement is created using string concatenation and
then is executed using the execut eQuery method of the St at enrent
class. This version of the program took 126 seconds to complete 2000
iterations. The same SQL statement executed using a prepared state-
ment completed in 24 seconds.

The use of a Pr epar edSt at enrent also provides a convenient way
to define queries in a single location in the code, and then using the
prepared statement (represented by a Prepar edSt at ement object)
throughout the program.

The program shown here creates and executes a prepared SQL
statement in the following steps.

1. Load driver and create connection

2. Create query string with parameters and create
Pr epar edSt at enent object

3. Set parameter value and execute query

4. Loop for 2000 iterations

Load Driver and Create Connection

As shown previously, the database driver is loaded and the con-
nection to the database is made. The same ODBC data source is used
for this connection, as follows:

O ass. forNane ("sun.jdbc. odbc. JdbcQdbcDriver");
String url = "j dbc: odbc: nsaccessdb”;
Connection con = Driver Manager. get Connecti on (

url, oty

The f or Nanme method is used to load the JDBC-ODBC bridge class.
The URL string is created with reference to the ODBC MicroSoft-
Access database used in the example. This string is then passed as a
parameter to the get Connect i on method of Dri ver Manager , which
then returns the Connect i on object.

Create Query String with Parameters
and Create PreparedStatement Object

A String used to hold the query is created and assigned an initial
value of the SQL sel ect statement with the placeholder in the wher e
clause, as follows:

String gs = "select * fromloadtest where coll = ? ";
PreparedSt at ement prepStnt = con. prepareStatenment (gs);

The Pr epar edSt at enent object, prepSt nt, in combination with
the set | nt method in the pr epar edSt at nent class, is now used to
execute the statement throughout the program.

Set Parameter Value and Execute Query

The goal of this program is to demonstrate the performance
improvement that can be realized with the execution of prepared SQL
statements. The starting time and ending time therefore are tracked
using a series of calls to aj ava. uti | . Dat e object, as follows:

Date dt = new Date();
| ong seconds = dt.getTinme();

String startTinme =
Dat eFor mat . get Ti nel nstance().format (dt);

Systemout.println("Start Tine: " +
startTinme);

int n = 3;
bool ean result;

prepStnt.setlint(1, n);
Resul tSet rs = prepStnt. executeQuery();

The value of the prepared statement parameter must be set before
the query is executed. This is accomplished using the set | nt method
to set the value of the parameter. The set| nt method takes two
arguments, an integer value indicating the position of the parameter
(starting from position 1) in the query statement and an integer value

i

100

to set the parameter at that position. Once the parameter is set, the
execut eQuery method of the Pr epar edSt at enent class is called to
execute the statement and return a Resul t Set representing the
results of the query.

Loop for 2000 Iterations

In the next step, the result set is positioned before the start of the
first set and the loop is started. In this test, data is not actually
retrieved and displayed (this does not significantly affect the results).
For each iteration, the previous Result Set is closed, the
Prepar edSt at ement parameter is set to the new value using the
index variable for the for loop, and the execut eQuery method is
called and the new Resul t Set is retrieved using the same object con-
tainer that was previously used.

bool ean nore = rs.next();
for (; n <2000 & nore ; n++) {

rs.close();
prepStnt.setint(1, n);
rs = prepStnt . execut eQuery();

nore = rs. next();

Date dtEnd = new Date();
| ong endSeconds = dt End. get Ti ne();
String endTine =
Dat eFor mat . get Ti nel nstance().format (dtEnd);
Systemout.printin("End Tinme:" + endTine);

/] display el apsed tine

seconds = (endSeconds - seconds)/ 1000;

Systemout.printin("Hapsed tine: " + seconds +
" seconds for " + n + " records.");

When the loop is complete, the ending time and the elapsed time
are calculated and displayed to the terminal screen.
The complete code for this example is shown in Program 4.3.

Program 4.3 preptest2.Java
i mport java.sql.*;
import java.io.?*;
inport java.util.Date;

cl ass PrepTest2 {
public static void main(String argv[]) {

try {

d ass. forNane ("sun. j dbc. odbc. JdbcQdbcDri ver™);
String url = "jdbc: odbc: nsaccessdb”;

Gonnection con = Driver Manager . get Connecti on (
url, Illl, Illl);

Sring gs = "select * fromloadtest where coll = ? ";

Prepar edSt at enent prepStnt =
con. prepareStatement(gs);

Date dt = new Date();
| ong seconds = dt.getTine();

String startTi ne = Dat eFor mat . get Ti nel nst ance()
format(dt);

Systemout.println("Start Tine: " + startTinme
IE

int n=3;

bool ean resul t;

prepStnt.setlnt(1, n);

ResultSet rs = prepStnt.executeQery();
bool ean nore = rs. next();

for (; n <2000 & nore ; n++) {

rs.close();
prepStnt.setlnt(1, n);
rs = prepStnt.executeQery();

continued

101

102

nmore = rs.next();

Dat e dt End = new Date();
| ong endSeconds = dt End. get Ti ne() ;

String endTine =
Dat eFor mat . get Ti nel nst ance().format (dtEnd);

Systemout.printin("End Tine:" + endTine);
[/ display elapsed tine
seconds = (endSeconds - seconds)/ 1000;
Systemout. printIn("Hapsed tine: " + seconds +

' seconds for " + n + "
records.");

catch (java.l ang. Exception ex) {

/'l Print description of the exception.
Systemout. printin("** BEror on data select. ** ");
ex. print StackTrace ();

The following code example shows the creation and execution of a
query statement to process the same number of records but uses a
St at enent object instead of a Pr epar edSt at enent to process the
SQL statement. The query statement is created within the processing
loop using the following code.

String gs = "select * fromloadtest where coll =";

queryString = gs + n;
rs = stm.executeQuery(queryString);

Because the new value for the selection criteria cannot be related
to a parameter, with each iteration of the loop the query string must
be re-created and then must be executed using the execut eQuery
method of the St at enent class. The query string has been defined as
a string with the column select criteria missing. This information can
be appended to the query string to complete the statement and is done
for each iteration of the loop, as shown in Program 4.4.

Program 4.4 preptestl.Java
i mport java.sql.*;
i mport java.io.*;
import java.util.Date;
i mport java.tsxt. Dat eFornat;

class PrepTestl {
public static void main(String argv[]) {

try {

d ass. forNarme ("sun. j dbc. odbc. JdbcQdbcDri ver");

String url = "jdbc: odbc: nsaccessdb";
Gonnecti on con = Iri ver Manager . get Gonnecti on (
url , n II' n Il) ;

Statenment stmt = con.createStatenent();

Date dt = new Date();
| ong seconds = dt.getTinme();

String startTi me = DateFornat. get Ti nel nst ance()
format(dt);

Systemout.println("Start Tine: " + startTine);

int n=1;
Sring gs = "select * fromloadtest where col1 =";

continued

103

104

String queryString = gqs + n;
Resul t Set rs = stnt.executeQuery(queryString);
bool ean nore = rs. next();

for (; n < 2000 & nore ; n++) {
queryString =qs + n;
rs = stn.executeQuery(querystring);
nmore = rs.next();

Date dt End = new Date();
| ong endSeconds = dt End. get Ti ne() ;

String endTine =
Dat eFor mat . get Ti nel nst ance() . format (dtEnd);

Systemout.printin(End Tine: + endTine);

/1 display elapsed tine
seconds = (endSeconds - seconds)/ 1000;
Systemout. printin("Hapsed tine: " + seconds +

' seconds for " + n + " records."

)

catch (java.lang. Exception ex) ({

[/ Print description of the exception.
Systemout. println("** Eror on data insert. ** ");
ex. print StackTrace ();

}

Positioned Cursor Upcdate

It is not uncommon for an application to read data with a cursor and
then update rows selectively based on information gathered during
the data retrieval process. It is convenient and more efficient simply
to update “the current row” of the cursor rather than to create selec-
tion criteria and execute another SQL statement to search for and
then update the record. The additional statement execution could
require an index read and possibly additional data retrieval.

The positioned cursor update (or update cursor) provides func-
tionality that eliminates the need to query for an update of a current
record. This capability is supported in JDBC provided the database
being used supports it. This example performs the following steps:

1. Load database driver and create connection

2. Create Dat abaseMet aDat a object and test for positioned
update functionality

3. Execute select query
4. Get cursor name and execute update statement
5. Review results

Load Database Driver and Create Connection

The JDBC-ODBC bridge driver is loaded as in the previous steps.
The only difference in this case is that the database driver loaded is
the Informix database driver. This driver is needed because the
Microsoft Access database used in the previous examples does not
support positioned update as of this writing.

d ass. forNane ("sun.jdbc. odbc. JdbcGdbcDriver");

String url = "jdbc: odbc:inform x5";

Connection con = DriverManager. get Connection (
url, /| dat abase URL
"usera", [/ user nane

"xxxxx"); I/ user password

105

106

The call to create the Connecti on object includes values for the
user name and password. These values are required by the Informix
database being used.

Create DatabaseMetaData Object and Test
for Positioned Update Functionality

Once the connection is established, the program tests for the abil-
ity to perform positioned updates. This is accomplished using the
Dat abaseMet aDat a object for the database connection.

/1 need a database that supports positioned updates
Dat abaseMet aDat a dnmd = con. get Met aDat a() ;
if (dnd. supportsPositionedUpdate() == fal se)

{

Systemout . println(

"Positioned update is not supported by this
dat abase.");

Systemexit(-1);
}

The Dat abaseMet aDat a object is created using the get Met aDat a
method of the Connecti on object. The Dat abaseMet aDat a class
contains a support sPosi t i onedUpdat e method that returns true if
positioned updates are supported and returns false if they are not. In
the previous code snippet, if the supportsPosti onedUpdate
method returns false then an error message is printed to the terminal
screen and the program terminates.

Execute Select Query

Two St at enent objects are used to perform the database opera-
tions: one St at enent to retrieve the data and set the cursor position
and the other to perform the update. The statement executed to
retrieve the data is created and executed as follows:

Staterment stml = con.createStatenent();

ResultSet rs = stntl. executeQuery("select " +
" * fromloadtest where coll = 5" +
" for update ");

This statement is executed using a sel ect statement that ends with
the clause “for update.” This indicates to the database engine that the
cursor may be used later to perform an update.

Get Cursor Name and Execute
Update Statement

The common SQL syntax for performing a positioned update is

updat e <t abl e_nane>
set <colum _list> = <value_ |ist>
where current of <cursor_nane>

The cursor name is needed to perform a positioned update. This
name is obtained using the get Cursor Nane method of the
Resul t Set class as shown:

String cursName = rs. get Cursor Nane();
Systemout.println("cursor name is " + cursNane);
Statenent stnt2 = con.createStatenent();

/1 update stnt2 at coll =5

int result = stmt 2. execut eUpdat e(
"update | oadtest set col2 = 1000 " +
" where current of + cursNane);

A second St at enmrent is created and the cursor name is used to cre-
ate the update statement executed with the execut eUpdat e method
of the St at enent class. The cursor name is appended to the clause
“where current of” to identify a cursor for the positioned update
statement.

Review Results

This example then executes another statement that retrieves data
from the updated row. This data is then displayed to the terminal
screen to validate that the update has taken place, as shown in the fol-
lowing code:

107

108 /]l retrieve row to view updated val ue
rs = stml. executeQuery("select * fromloadtest " +
" where coll =5 ");

rs.next();
Systemout.printin(" coll
" col 2

+ rs.getint(1) +
+rs.getint(2));

The complete code for this example is shown in Program 4.5.

Program 4.5 posupd.java
i nport java.sql.*;
i mport java.io.*;

cl ass PosUpd {

public static void main(String argv[]) {

try {

d ass. forNane ("sun. j dbc. odbc. JdbcQdbeDri ver");

String url = "jdbc: odbc:inform x5";
Gonnection con = Dri ver Manager . get Gonnecti on (
url, "usera", "Xxxxxx");

/1 need a dat abase that supports positioned updates
Dat abaseMet aDat a dnd = con. get Met aDat a() ;

i f (dnd. supportsPositionedpdate() == false) {
System out . printl n(

"Positioned update is not supported by this database.");
Systemexit(-1);

Statenment stnil = con.createStatenent();

continued

ResultSet rs = st 1. executeQuery("select " +

" * froml oadtest where col1l = 5" +

" for update ");
rs.next(); // look at the first row (col 1=5)

String cursNane = rs. get Cursor Nane() ;

Systemout. println("cursor nane is " +
cursNane);

Statenent stnt2 = con. createStatenent();

/] update stnt2 at coll =5

int result = stnt2. executeUpdat e(
"update | cadtest set col2 = 1000 " +

" where current of " + cursNane);

/] retrieve row to view updated val ue

rs = stnt1l. executeQuery("select * from
| oadtest " +

" where coll =5 ");

rs.next();
Systemout.println(" coll =" +rs.getint(1) +
" col2=" +rs.getInt(2));

catch (java.lang. Exception ex) ({

[/ Print description of the exception.
Systemout.println("** Eror on data select. ** ");
ex. print StackTrace ();

109

110

Transaction Modes

Transactions provide the capability to treat a series of SQL update
statements as a single statement; if any statement fails, the entire set
of updates is removed from the database. If a database supports trans-
actions, JDBC provides the facilities to use these transactions.

With JDBC, if a database supports transactions and transaction log-
ging is on, then every statement is treated as though a transaction
were open. There is no explicit “begin work” to indicate the start of a
transaction because the database is always in a transaction. A conmi t
method is available in the Connecti on class to commit all current
work to the database and begin a new transaction. This effectively
executes a “begin work” against the database.

A JDBC connection begins with the database in auto-commit
mode. This means that every SQL statement executed is treated as an
individual transaction; no statements will be grouped together as
transactions. This mode must be changed using the set Aut oConmi t
method of the Connect i on class. The following steps are involved in
the creation of the transaction modes example.

Load driver and create connection

Set the auto-commit mode

Create statement and execute DDL and DML
Commit work

Create prepared statement and execute updates
Rollback work and examine results

cat ch code block

No ok wNPE

These steps are detailed in the sections that follow.

Load Driver and Create Connection

The JDBC-ODBC bridge driver is loaded first. The database driver
loaded is the Informix database driver because support for transac-
tions is needed in this example.

G ass. forNane ("sun.jdbc. odbc. JdbcCQdbcDriver");
String url = "jdbc: odbc:inform x5";
Connection con = DriverManager. get Connection (

url,
"usera",
"XXXXX")

The call to create the Connecti on object includes values for the
user name and password. These values were required by the Informix
database being used.

Set the Auto-Commit Mode

When the JDBC auto-commit mode is set to true, each SQL state-
ment is executed as a singleton transaction; if it completes success-
fully, there is an implied commit to the database. This mode would
preclude the grouping of a set of SQL statements as one single, atom-
ic transaction. Setting the auto-commit mode to false disables the
auto-commit feature and allows a group of SQL statements to be
grouped as a transaction.

/I wll turn off the default auto-conmit node so that statenents
/'l can be grouped as transactions.
con. set AutoConm t(false);

Create Statement and Execute DDL and DML

A statement object is required to execute a series of SQL statements
to update the database. DDL statements are then executed to create a
database table and create an index on the database table.

Statement stnt = con.createStatenent();

int result = stnt.executeUpdat e(
"create table transtest(coll int, col2 int, col3 char(10)
)")
result = st nt . execut eUpdat e(
"create index idxl on transtest(coll) ");

Commit Work

If an error occurs during the execution of any of the previous SQL
statements, a SQLExcepti on is thrown and caught with the cat ch
code block in the method. This code block executes a SQL rollback,

111

112

which rolls back or removes from the database the results of the exe-
cution of the statements shown in the previous method. If code exe-
cution has arrived at the following line, then no fatal exception has
been thrown and the data can be committed to the database. This can
be accomplished using the conmi t method of the Connect i on class.

con.conmit();

Note that in some databases, executing a comm t orrol | -
\ back would close open database statements, requiring
nete | database objects to be re-opened after these operations.

Create Prepared Statement
and Execute Updates

To demonstrate multiple updates and transactions, a series of updates
will be performed as a single transaction. A pr epar edSt at enrent object
is created using the prepar eSt at enent method of the Connecti on
object. This returns a statement with a single parameter which is substi-
tuted before the statement is executed as shown below.

int n=0;
Prepar edSt at enent prepStnt = con. prepareSt at enent (
"insert into transtest values (?, 1, XXOOXXX) ");

for (n =1, n < 20; nt+t) {
prepStnt.setlnt(1, n);
prepSt nt . execut eUpdat e() ;
}

Within the f or loop, the single statement parameter is set and the
prepared statement is executed using the execut eUpdat e statement.
This loop will be executed and the database update performed 20
times. This entire set of updates will represent a single transaction.

Rollback Work and Display Results

To demonstrate the effect of a rollback work statement, the rol | -
back method of the Connecti on object is executed. This rolls back
the work since the last commit. This means that the database table
and the index remain in the database after the rollback method has
been executed because these statements were executed before the
commit work method had been called.

con.rol |l back();

/1 validate that rollback succeeded. There shoul d be
/Ino data in the table
St atement stnt 1= con.createStatenent();
Result Set rs = st 1. executeQuery("select * fromtranstest”);
bool ean nore = rs. next();
if (nore == false)

Systemout.println("Data was rolled back ");

After the rollback work has been executed, a new statement is cre-
ated and executed to examine the data that remains. If no data is
found, this indicates that the table is still there, but there is no data in
the table—an indication that the rollback was successful.

catch Code Block

This section of code will be executed if an SQLExcept i on has been
thrown.

This indicates that an error has occurred and all of the statements in
the group should be rolled back. This rollback is performed as follows:

catch (SQLException ex) {

/1 Print description of the exception.

Systemout.printin("** Error on database update. Rolling back
%k N),

con. rol | back();

ex. printStackTrace ();

113

114 Program 4.6 provides the complete code for the transaction mode
example.

Program 4.6 TransData.Java
i mport java.sql.*;

i mport java.io.?*;

class TransData {

public static void main(String argv[]) {

try {

G ass. forNanme ("sun.jdbc. odbc. JdbcCGdbcDri ver");

String url = "jdbc: odbc: nsaccessdb”;
Gonnection con = Driver Manager . get Connecti on (
url , n Il, n Il) ;

[l will turn off the default auto-commt node so that

statenents
/1 can be grouped as transactons.
—— con. set Aut oCommit (fal se);

n I!

Statenment stmt = con.createStatenent();

ii

int result =
st nt . execut eUpdat e(

"create table transtest(coll int, col2 int,
col 3 char(10))");

result =
st nt . execut eUpdat e(
“create index idxl on transtest(coll) ");

con.comit();
int n =0;
Prepar edSt at enent prepStnt = con. prepar eSt at enent (

continued

"insert into transtest values (?, 1, XXX) ");

for (n=1; n<20; nt+) {
prepStnt.setlnt(1, n);
prepSt nt . execut eUpdat e() ;

con. rol | back();

/1l validate that roll back succeeded.
/!l There should be no data in the table
St at ement stmt 1= con. createStatenent();

Resul tSet rs = stni 1. execut eQuery("select * from
transtest");

bool ean nore = rs. next();
if (nmore == false)
Systemout.println("Data was rol | ed back ");

}
catch (SQLException ex) {

[/ Print description of the exception.

Systemout.println("** Error on database updat e.
Rolling back ... ** ");

con. rol | back();
ex. print StackTrace ();

CGl Application

With the prevalence of the World Wide Web, CGI applications are
commonplace. Though currently these are written primarily in C or
C++, Java presents an attractive alternative to these languages for the

115

116

creation of these applications. The code in this section provides an
example of a simple CGI application written in Java.

The purpose of the this CGI program is to retrieve the records
from the customer’s table where the last name is like the parameter
passed into the CGI program. The CGI application first receives the
command line arguments, the CGI token. This token is parsed and
used as a parameter in a SQL statement to be executed. The results
of the executed statement are formatted as an HTML page and dis-
played to the terminal screen. The following steps are used in this
application:

Load driver manager and create connection
Create prepared statement with parameter
Parse CGI arguments

Set parameters and execute query

Retrieve results and HTML output

o s wbdPR

These steps are discussed in more detail in the following sections.

Load Driver Manager and Create Connection

The driver manager is loaded as in the previous examples and the
connection is created with the Microsoft Access database. The code
for this is as follows:

C ass. forNane ("sun.jdbc. odbc. JdbcCQdbcDriver");

String url = "jdbc: odbc: nsaccessdb”;
Connection con = Driver Manager . get Connection (
url , n ll’ n Il);

Create Prepared Statement
with Parameter

A Prepar edSt at enent object is then created using a SQL sel ect
statement that includes a parameter for the filter statement. This
parameter is used to identify the list of customer table records that will
be displayed in the HTML page. The value for this parameter is sup-
plied by the CGI parameters passed to the program.

PreparedStatenent stnt = con. prepareSt at enent (
" select * fromcustoners " +
" where lastnanme like ? ");

Parse CGl Arguments

The CGI parameters are passed to the program using a “+” to sep-
arate the arguments. These arguments must be parsed and the param-
eter values retrieved from the string passed to the program.

First the command line array is checked to determine whether or
not any arguments have been passed to the program. If no arguments
have been passed, the program will exit.

/'l parse the C3 argunents

if (argv.length == 0) {
Systemout. printin("Invalid Paraneters. Exiting ... ");
Systemexit(-1);

StringTokeni zer Paranms = new StringTokeni zer (
argv[0], delim);

Vector vParanms = new Vector();

String s = null;

whil e (Parans. hasMoreTokens()) {

s = Parans. next Token();
vPar ans. addEl ement (s) ;

Next, a StringTokeni zer object is created using the array of
strings passed on the command line and specifying the delimiter string
(previously set to the “+” character) to be used to parse the string. A
Vect or object is also created to store the parameters passed on the
command line. A whi | e loop is then executed to retrieve each of the
parameter values passed. As each of these values is retrieved, it is

117

118

added to the Vector used to store the parameter values. (In this
example, only one parameter value is passed.)

Set Parameters and Execute Query

The parameter values then are used as parameters for the query.
This is accomplished by retrieving the parameter value from the
Vect or object used to store the values and using this string to set the
first parameter in the Pr epar edSt at ement containing the query.

/1 Argl is the last name

stmt.setString(1, vParans.elementAt(0).toString());
ResultSet rs = stnt.executeQery();

3${- Metzcape _ O]

File Edit Wiew Go Communicator Help
w7 Bookmarks J Location: [art/idbe/old_CDROMAdk113-Examples/CGlApp/testhtml +] Il

<€ A &% 2 £ @ &

Back Reload Home Search Guide Print Security

TechEncyclopedi M avigator k' Dictionary Dictionary Spectum by

-

Parzed: Sruth
Customer address information 15 listed in the table below
Customer Addreszes
First Name Last Name Address City |State Zip
Sally Srrath 1020 Cardboard Lane il | FL 28120
Winston Srrth 1020 Cardboard Lane ol FL 28120
= Document: Done A 2 B

Figure 4.1: Output of CGI demonstration application

Retrieve Results and Display Formatted Output

The results of the query are then retrieved in a Resul t Set . If no
results have been retrieved, as indicated by the bool ean value
returned from the next Result Set method call, then the program
displays an error message and exits. If program execution continues,
then values have been found and will be displayed using formatting
commands for the HTML pages. These formatting commands display
the page as an HTML table, as shown in Figure 4.1.

Resul t Set Met aData rsnd = rs. get MetaDat a() ;

bool ean nore = rs. next();

if ('nore) {
Systemout.println("Error - no rows retrieved");
Systemexit(-1);

}

[/ HTM. page header
Systemout.println("");
Systemout. printl n(

"<p> Qustoner address information is listed in the tabl e bel ow
</p>");

/| Tabl e header

Systemout.printin("<table border > ");
Systemout. println("<capti on>Cust oner Addresses </caption>");
Systemout.printin("<th> First Name </th>");
Systemout.println("<th> Last Name </th>");
Systemout.println("<th> Address </th> ");
Systemout.println("<th> Gty </th>");
Systemout.println("<th> State </th> ");
Systemout.printin("<th> Zip </th>");

/1 display the table rows
while (nore) {
Systemout.printin("<tr>");
for (n =1, n <=rsnmd. get Col umCount (); n++)
Systemout.printin("<td > " +
rs.getString(n) +

119

120

"o<ltd> "),
Systemout.println("</tr>");
nore = rs.next();

}

Systemout.printin("</table>");

A St at enent object is used to determine the number of columns in
the retrieved Resul t Set . Each column of the retrieved row is placed
in the table, the result being a HTML table with rows of data for each
row returned from the database.

The complete code for this example is displayed in Program 4.7.

Program 4.7 cgiapp.java
i mport java.sql.*;
inmport java.util.StringTokeni zer;
i mport java.util.Vector;
inport java.io.*;

cl ass cgi App {
static String delim= "+";
public static void main(String argv[]) {
int n=0;
try {
d ass. forName ("sun. | dbc. odbc. JdbcCdbcDri ver");

String url = "jdbc: odbc: nsaccessdb”;
Connection con = Driver Manager . get Connecti on (

nou

url, ")

PreparedStat ement stnt = con. prepareSt at enent (
' select * fromcustoners " +

continued

where |astnane like ? ");

/] parse the CA argunents
if (argv.length == 0) {

Systemout.printin(“Invalid Paraneters. Exiting ...
")

Systemexit(-1);

S ringTokeni zer Parans = new Sri ngTokeni zer (argv[0],
delim);

Vector vParans = new Vector();
String s = null;

whi l e (Parans. hasMor eTokens()) {

s = Parans. next Token();
vPar ans. addEl enent (s);

/1 Argl is the |ast name
s = vParans. el ement At (0).toString();

stni.setSring(1, vParans.elemnentAt(0).toSring());
Resul tSet rs = stni.executeQuery();

Resul t Set Met aData rsnd = rs. get Met aDat a() ;

bool ean nmore = rs. next ();

if ('more) {
Systemout.printin("Eror - no rows retrieved");
Systemexit(-1);

/| HTM. page header
Systemout. println("");

continued

121

122

Systemout. println("<p> Qustoner address infornation i s
listed in the table bel ow </p>");

/| Tabl e header
Systemout.println("<table border > ");

Systemout. println("<capti on>Cust omer Addresses
</caption>");

Systemout.println("<th> First Name </th>");
Systemout.println("<th> Last Nanme </th>");
Systemout.println("<th> Address </th> ");
Systemout.printin("<th> Gty </th>");
Systemout.printin("<th> State </th>");
Systemout.printin("<th> Zip </th> ");

while (nore) {
Systemout.printin("<tr>");
for (n=1; n<=rsnu get® umGunt (); n++)

Systemout.println("<td > " +
rs.getString(n) +
Y </td> ")

Systemout.println("</tr>");
nore = rs.next();

}

Systemout.printin("</table> ");

catch (java.lang. Exception ex) {
ex. print StackTrace();

Metadata Access

The JDBC interface provides access to a rich supply of information
about the current database or a Resul t Set . While many users never
need to access this information, there is most likely some small
subset that will be useful to most users. For instance, the

Resul t Set Met aDat a class provides information on the number of
columns retrieved in a Resul t Set . It is very likely that generic rou-
tines reading a Resul t Set will want to make use of this information
rather than hard-coding the column count each time the routine is
used.

The following example demonstrates the use of metadata methods
for evaluating an unknown query at runtime. This example enables
the user to enter a query and then processes the query, using metada-
ta methods to determine the number and type of columns, and mak-
ing a rudimentary attempt to format the data based on the data type.
This program uses the following steps:

Retrieve query from the command line
Load driver and create connection
Create statement and execute the query

Retrieve the Resul t Set and determine the number of
columns

Execute formatting routine
6. Iterate results displaying formatted data

W N PE

i

These steps are explained in more detail in the following sections.

Retrieve Query from the Command Line

The first step is to retrieve the query as a Stri ng from the com-
mand line. This is accomplished by setting the queryStri ng string
to the value of the first element of the argument string array (ar gv). If
this value is null, the program displays an error message and aborts.
This string is then used to execute the query.

/1 default query is NULL
String queryString = null;

/] default data source nane
String url = "jdbc: odbc: nsaccessdb”;

/1 rst argument is the query to execute
if (argv.length > 0)
queryString = argv[0];

123

124

I‘ l Il » II Il I

/1 if no query, nust abort
if (queryString == null) {
System out . printl n(
"Mist enter a query as a parangter. Aborting. ");
Systemexit(-1);

Load Driver and Create Connection

As in the previous examples, the Dri ver Manager must be loaded
and the Connect i on object must be created. The ur| string is used to
connect to a local Microsoft Access database using the database URL.

O ass. forNane ("sun.jdbc. odbc. JdbcCQdbcDriver");
Connection con = DriverManager. get Connection (
url, ™", "");

Create Statement and Execute the Query

The St at erent object is then created and the query string received
on the command line is executed. The results of the query execution
are returned as a Resul t Set . This Resul t Set then is used to retrieve
and process the results.

/'l Create statenent
Statenent stnt = con.createStatenent();

/1 Execute the query
ResultSet rs = stnt.executeQuery(queryString);

Retrieve the ResultSet and Determine
the Number of Columns

A Resul t Set Met a object is created from the Resul t Set returned
by the query statement execution. One of the more common uses of a
Resul t Set Met aDat a object is the retrieval of the number of columns
returned by the Resul t Set using t he get Col umCount et hod
as shown in the following code.

/! Determne the nature of the Results 125
Resul t Set Met aData nd = rs. get Met aDat a() ;

/1 display the results
i nt nunCol s = nd. get Col umCount () ;

Execute Formatting Routine

The Resul t Set Met aDat a object is used to determine the nature of
the data returned by the query. The f or mat Qut put St ri ng routine is
used to interpret and format the data. It receives three parameters: the
Resul t Set Met aDat a object, the Resul t Set object, and the column
index. The Qut put St ri ng is the string that is returned by the method,
and the col TypeNaneSt ri ng is the string used to store the data type
name of the column data type:

/1 Formatting routine
static String format Qutput String(ResultSet MetaData rsnd,
Resul t Set rs,
i nt col I ndex) {
String QutputString = null;
String col TypeNaneString = null;

try {

int col Type = rsnd.getColumType(col | ndex);

col TypeNameString = typeNaneString(col Type);
if (col TypeNaneString. equal s("UNKNOMW') ||
col TypeNaneString. equal s("OTHER'))
col TypeNaneStri ng = rsnd. get Col unnTypeNarre(col | ndex);

(oj ect obj = formattedVal ue(rs, rsnd, collndex,
col Type);
if (obj == null)

return (" ** NULL ** ");

Qut put String = rsnd. get Col umLabel (col I ndex) +

126

" Data Type is " +
col TypeNaneString +
"; valueis " + obj.toXring();

}

The get Col umType method of the Resul t Set Met aDat a class is
called to retrieve the column type of the Resul t Set column being
formatted (referenced by the col | ndex parameter).

This method then calls the f or mat t edVal ue method to format the
data in the column based on the column data type. This method
returns an object that is tested for a NULL value. If the object is
NULL, then a string indicating a NULL value is returned. If the
object is not null, a String is created with the column label as
returned by the get Col utmLabel method of the Resul t Met aDat a
object, the data type name as stored in the col TypeNaneSt ri ng vari-
able, and the value of the object as returned by the Chj ect class
t oSt ri ng method. This Stri ng is returned by the method as shown
in the return clause shown following the cat ch code block in the fol-
lowing code.

catch (SQ.Exception ex) {

Systemout.println ("\n*** SQException
caught ***\n");

while (ex !'= null) {
Systemout.println ("SQState: " +
ex.getSQState ());

Systemout.println ("Mssage: " +
ex. get Message ());
Systemout. println ("Vendor: "o+

ex. get ErrorCode ());
ex = ex.get Next Exception ();
Systemout.println ("");

return(QutputString);

Thet ypeNaneSt ri ng method evaluates the integer data type value
returned by the Resul t Set Met aDat a get Col Type method and sim-
ply maps the integer value to a character string name. This character
string name then is displayed with the column data to indicate the col-
umn data type.

/1 return the type nane as a string
static String typeNameString(int Type) {

switch (Type) {

case (Types.BIGNT): return ("BIG@ NT");
case (Types. BI NARY): return ("Bl NARY");
case (Types.BIT): return ("BIT");
case (Types.CHAR): return ("CHAR');
case (Types. | NTEGER): return ("I NTEGER');
case (Types. DATE): return ("DATE");
case (Types.DECI VAL): return ("DECI MAL");
case (Types. FLOAT): return ("FLOAT");
case (Types. LONGVARBI NARY): return ("LCONGVARBI NARY");
case (Types. LONGVARCHAR): return ("LONGVARCHAR');
case (Types. OTHER): return ("OTHER');

}

return (" UNKNOMWN');

}

The f or mat t edVal ue method demonstrates the process of format-
ting column data based on data type. The method receives a
Resul t Set object, a Resul t Set Met aDat a object, a column index,
and a data type for the column. The method returns an Qbj ect refer-
ence.

The method evaluates the data type being passed into the method.
Based on the data type, the correct Resul t Set “get” method is called
to retrieve the data. The correct data type object is identified as the
return value for each “get” method, but when the object is returned
from the method, it is cast as an (hj ect reference. This allows the
return value to be managed in a generic way in the calling method.

127

128 There is no specific effort to format the data in this example, though
that could easily be managed in the appropriate case clause of the
swi t ch statement shown in the following code. In some cases, the
method does map several data types to a single Java data type, but
there is no effort made to drastically change the format of the specif-
ic data in the columns.

Each case clause in this swi t ch statement returns an (bj ect ref-
erence for the specific data type returned. Should control fall through
the swi t ch statement, a return statement returns the object reference
for the Resul t Set column (get Coj ect).

static Cbject formattedVal ue(ResultSet rs,
Resul t Set Met aDat a rsnd,
int col | ndex,

int Type) {

oj ect general Gbj = nul |;

try {
switch (Type) {

case (Types.BIG NT):
Long | ongj = new Long(rs.getLong(collndex));
return ((Qoject) longhj);
case (Types.BIT):

Bool ean bool eanChj = new Bool ean(rs. get Bool ean(
col I ndex));

return ((Object) bool eanChj);
case (Types.CHAR):
Sring stringdj =new Sring(rs.getSring(collndex));
return ((Object) stringQoj);
case (Types.|NTEGER):
Integer integer] = new Integer(rs.getlnt(col I ndex)

return ((Cbject) integerChj);

case (Types. DATE):
Date dateCbj = rs.getDate(col I ndex);
return ((Object) dateoj);

case (Types. DECI NAL):

case (Types. FLOAT):

Nureric nunericCbj = rs.getNuneric(coll ndex,
rsnd. get Scal e(col I ndex));

return ((Cbject) nunericChj);

case (Types. BI NARY):
case (Types. LONGVARBI NARY)
case (Types. LONGVARCHAR)
case (Types. OTHER)
return (rs.getCbject(collndex));

}
/1 get the object handle
general Gbj = rs.getbject(collndex);

}

Iterate Results Displaying Formatted Data

The Resul t Set is iterated first by positioning the pointer before
the first element using the next method, and then moving through the
Resul t Set using a whi | e loop. For each row in the Resul t Set , the
row count is displayed and an inner loop displays the output of the
f or mat Qut put St ri ng method.

/1 Display data, fetching until end of the result set
bool ean nore = rs. next();

int ronCount = O;

while (nore) {

ronwCount ++;
Systemout. println("*** row" + rowQount + " *** "),

/1 Loop through each colum, getting the
/1 columm data and di spl ayi ng

for (n=1; n<=nunCols; n++)
/1 display formatted data
System out. println(fornmatQutputString(

Systemout.println("");

129

130

nmore = rs.next();

}

The complete code for this example is shown in Program 4.8.

Program 4.8 MetaDataExamplel.Java
i mport java. net. URL;
i nport java.sql.*;

cl ass Met aDat aExanpl el {

public static void main(String argv[]) {
short n = 0;

try {

/1 default query is NULL
String queryString = null;

/] default data source nane
String url = "jdbc: odbc: nsaccessdb";

/1 rst argunment is the query to execute
if (argv.length > 0)
queryString = argv|[0];

/1 if no query, nust abort
if (queryString == null) {

System out . print | n(

"Mist enter a query as a paraneter.
Aborting. ");
Systemexit(-1);

A ass. for Name ("sun. jdbc. odbc. JdbcCdbcDri ver");

continued

Gonnecti on con = Dri ver Manager . get Connecti on (
url, llll, Illl);

/1 Create statenent
Statement stni = con.createStatenment();

/| Execute the query
Resul t Set rs = stnt.executeQuery(queryString);

// Determne the nature of the Results
Resul t Set Met aData nd = rs. get Met aDat a() ;

/] display the results
i nt nunCol s = nd. get Col umCount () ;

Systemout. printlin("");

// Dsplay data, fetching until end of the result set

bool ean nore rs.next();
i nt rowCount = O;
while (nore) {

rowCount ++;

/1 Loop through each col umm, getting the
[/ columm data and di spl ayi ng

for (n=1; n<=nunCol s; n++)
/] display formatted data
System out . pri nt | n(

format Qut put String(nd,rs, n));

Systemout. println("");
nore = rs.next();

Systemout.println("*** row" + rowCount + " ***

)

continued

131

=

catch (SQ.Exception ex) {

Systemout.println (
"\ n*** SQLExcepti on caught ***\n");

while (ex !'=null) {
Systemout.printin ("SQState: " +
ex.getSQ.State ());

Systemout.println ("Mssage: " +
ex. get Message ());
Systemout.println ("Vendor: ST

ex. getError Code ());
ex = ex.get Next Exception ();
Systemout.println ("");

}

catch (java.lang. Exception ex) ({

/] Got sone other type of exception.
Dunp it.

ex. printStackTrace ();

/1 Formatting routine
static String format Qut put String(Resul t Set MetabData rsnd,
Resul t Set rs,
i nt col I ndex) {
String QutputString = null;
String col TypeNaneString = nul | ;

try {

int col Type = rsnd. get Col umType(col | ndex);

continued

col TypeNaneString = typeNaneString(col Type); 133
if (col TypeNarmeString. equal s(" UNKNOMW') | |
col TypeNaneStri ng. equal s("OTHER'))

col TypeNaneS ri ng = rsnu. get Gol unmTypeNang(
col I ndex);

oj ect obj = formattedVal ue(rs, rsnd,
col I ndex, col Type);

if (obj == null)
return (" ** NULL ** ");

Qut put Sring = rsnd. get Gl unmLabel (col Index) + " Data
Type is " +
col TypeNaneString +
"; valueis " + obj.toSring();

catch (SQ.Exception ex) {

Systemout.println ("\n*** SQLEx-
ception caught ***\n");

while (ex '= null) {
Systemout.println ("SQState: " +
ex.getSQ.State ());

Systemout.println ("Mssage: " +
ex. get Message ());
Systemout.println ("Vendor: "+

ex. getErrorCode ());
ex = ex.get Next Exception ();
Systemout.println ("");

continued

134

return(QutputString);

[/ return the type nane as a string

static String typeNaneString(int Type) {

swi tch
case
case
case
case
case
case
case
case
case

e e e e e e e e

Type) {

Types. BIG@ NT): return ("BIGNT");
Types. Bl NARY) : return ("BI NARY");
Types.BI T): return ("BIT");
Types. CHAR): return ("CHAR');
Types. | NTEGER) : return ("I NTEGER');
Types. DATE): return ("DATE');
Types. DECI VAL): return ("DECI MAL");
Types. FLOAT) : return ("FLOAT");
Types. LONGVARBI NARY) : return (

" LONGVARBI NARY") ;

case (Types. LONGVARCHAR) : return (
" LONGVARCHAR") ;

case (Types.OTHER) : return ("OTHER');
}
return ("UNKNOMW');

static Object formattedVal ue(ResultSet rs,

Resul t Set Met aDat a rsnd,

continued

i nt col | ndex,
int Type) {

oj ect general Gbj = nul | ;

try {
switch (Type) {
case (Types.BIG NT):
Long | ong@ = new Long(rs. getLong(col Index));
return ((Qbject) longhj);
case (Types.BIT):

Bool ean bool eanCbj = new Bool ean(
rs. get Bool ean(col I ndex));

return ((Qoject) bool eantoj);
case (Types.CHAR):
Sring string = new Sring(rs.getSring(col | ndex
))
return ((Cbject) stringQoj);
case (Types.|NTEGER):

Integer integerbj = new Integer(rs.getlnt(
col I ndex));

return ((Qobject) integerQoj);

case (Types. DATE):
Date dateoj = rs.getDate(collndex);
return ((Object) dateCoj);

case (Types. DECI MAL):

case (Types. FLOAT):

Nuneri c nunericj = rs. get Nuneric(col | ndex,
rsnd. get Scal e(col Index));

return ((Object) nunericOoj);

case (Types. BI NARY):
case (Types. LONGVARBI NARY) :
case (Types. LONGVARCHAR)
case (Types.OTHER) :
return (rs.getbject(collndex));

continued

135

136 }
/1 get the object handl e

general Qbj = rs.get j ect(col I ndex);
catch (SQ.Exception ex) {
Systemout.println ("\n*** SQLException caught ***\n");
while (ex '= null) {

Systemout.println ("SQState: " +
ex.getSQ.State ());

Systemout.println ("Mssage: " +
ex. get Message ());
Systemout.println ("Vendor: "+

ex. getErrorCode ());
ex = ex. get Next Exception ();
Systemout.println ("");

/] just return the object referernce
return (general Goj);

Scrolling ResultSet Array

One of the limitations of the Resul t Set is that scroll cursors are
not supported. To overcome this limitation, the Java/JDBC program-
mer can make use of a small set of methods that provide this capabil-
ity. These minor code changes provide the ability to move forward or
backward through the data set, or to move to a specific row.

The following steps are taken in this program:

Declare RSAr r ay object

Load Dri ver Manager and connecti on

Create St at enent and execute

Iterate Resul t Set adding to Resul t Set Arr ay buffer
Display results

a s wbdrR

These steps are described in more detail in the following sections.

Declare RSArray Object

An RSArray object is declared to hold the Resul t Set elements
returned by the St at enent object. This object contains the methods
to store any Resul t Set elements. The RSAr r ay class contains a num-
ber of methods that will take any object reference passed (preferably
aResul t Set object, but that is not required). These objects are stored
in a Vect or object; one for the Resul t Set object pointer and the
other for the columns. (The RSArray class is described later in this
chapter.)

static RSArray rsBuff = new RSArray();

Load DriverManager and Connection

The Driver Manager must be loaded and a Connecti on estab-
lished. This code establishes a Microsoft Access database connection
with a local database using the JDBC-ODBC bridge.

C ass. forNanme ("sun.jdbc. odbc. JdbcCdbcDri ver");
String url = "jdbc: odbc: nsaccessdb”;
Gonnection con = Driver Manager . get @nnection (url, "", "");

Create Statement and Execute

Next, the St at enent object is created and executed using a query
that retrieves all columns and all rows for the | oadt est table.

Statenment stnt = con.createStatenent();
ResultSet rs = stnt. executeQuery(" select * fromloadtest");

137

138

Iterate ResultSet Adding
to ResultSetArray Buffer

The Resul t Set retrieved by executing the statement is then read in
a serial fashion. Each row retrieved is added to the Resul t Set Arr ay
object. At the end of the whi | e loop, the number of records loaded
(which is limited to 50 in this example) is stored in the r onsLoaded
integer variable.

while (nore & n++ < 50) {
rsBuff.addEl ement(rs);

nmore = rs.next();

}

int rowsLoaded = n;

Display Results

The results are then displayed in a serial fashion by using a
RSAr r ay method that displays a specific Vect or element. A f or loop
is executed for the number of rows that have been loaded into the
RSAr r ay object. For each iteration of the loop, the Buf f el enent At
method returns a Vect or data type for the element index value passed
into the method. This Vect or is the columns Vect or for the row
being displayed. By looping through the number of columns in the
query Resul t Set (as returned by the get Col umCount method of
the Resul t Set Met aDat a) all of the columns in the row will be dis-
played.

The Vect or, named Col unmsVect or, that has been returned by
the RSArray el enent At method is then traversed. For each ele-
ment in the Vect or, the el emrent At method returns an object, and
the t oSt ri ng method converts the Obj ect to a String for dis-

play.

Systemout.println("Processed " + n + " rows");
/1 traverse the rs buffer vector ResultsBuffer

Vect or columsVector = null; 139
for (x = 0; x < rowsLoaded-1; x++) {

/'l get the row
col umsVector = (Mector) rsBuff.H enent At (x+1);

/1 display the row contents (col ums)
for (n=0;, n<rs.getMtabata().get Gl umCount (); n++) {

Systemout.printin("FRow" + x + " Glum: " +n+" " +
col umsVector. el ement At (n

).toString());

}
}

Note that vecause the element is vetvieveA
‘P as awm object, it (s possivle to Aetevmive the

Aata type of the object by Aetevmining the

name of the class. The code to pevform tHhis

functon woulAd be as Lollows:

(oj ect obj = colums. el emrent At (X);
String s = obj.getd ass().getNane();

This code vetvieves the (D) ect vebevence Pov the
specified element amd thew vetvieves the class of the
ovject amd thew calls the get Nanme wethod to vetvieve
the name of the class. Using this class name, the Aata
type of the object cam be Aetevmined amd then used
accovdingly.

140 The code for the entire application is presented in Program 4.9.

Program 4.9 RSArrayl.java
i nport java.sql.*;
i mport java.io.*;
i nport java.util.Vector;

class rsArrayl {

static RSArray rsBuff = new RSArray();
public static void main(String argv[]) {

try {

d ass. for Nane ("] dbc. odbc. JdbcQdbceDri ver");

String url = "jdbc: odbc: nsaccessdb"”;
Connection con = DriverManager . get Connection (
url, "", """,

Statement stmt = con.createStatenent();

Result Set rs stnt. executeQuery(" select *
fromloadtest");

int n=0;
int x = 1;
Resul t Set Met aDat a rsnd = rs. get Met aDat a() ;

bool ean nore = rs. next();
i nt col Count rsmd. get Col umCount () ;

while (nore & n++ < 50) {

rsBuff.addEl ement(rs);

more = rs.next();

continued

int rowsLoaded = n;
Systemout. printIn("Processed " + n +" rows");
/] traverse the rs buffer vector Resul t sBuffer

Vect or col umsVector = nul | ;
for (x = 0; x < rowslLoaded-1; x++) {

/'l get the row
col umsVector = (Vector) rsBuff. El enent At (x+1

/1 display the rows contents (colums)
for (n=0; n<
rs. get Met aDat a() . get Col ummCount (); n++) {

Systemout.println("Row " + x +
Colum: " + n+ " " +

col umsVector. el enent At (n
).toString());

}

catch (java.l ang. Exception ex) {

/1 Print description of the exception.
Systemout. println("** Eror on data select. ** ");
ex. print St ackTrace ();

The RSArray Class

The RSArr ay class as used in the previous example provides a means
of moving forward and backward through the Resul t Set. The
RSAr r ay class is composed of the following methods.

141

142

Class Definition

The RSArray class contains two Vect or objects as instance vari-
ables. The Resul t sBuf f er Vect or object is used to hold an array of
Vect or objects that contain the constituent columns of each of the
rows. Instance variables are used to avoid having to instantiate new
Vector objects each time the methods are called. The class definition
for the RSAr r ay class is as shown in the following code.

class RSArray {
// instance vari abl es
int index = 0O;

/1l a vector of result sets
Vector Resul tsBuffer = new Vector();

/1l a vector of rows (results colums and data val ues)
Vector columms = new Vector();

A series of methods are used to manipulate the internal Vect or
objects. These methods are used to add elements to the RSArray
object, retrieve an element at a specific position in the Obj ect, or to
retrieve the next or previous element in the array. These methods are:

* AddEl enent
El enent At
* next

* previous

These methods are described in more detail in the following sections.

ADDELEMENT

The addEl emrent method takes a single Resul t Set as its parame-
ter. Each of the columns in this Resul t Set are retrieved as an Obj ect
and added to the columns Vect or object used to store the data in the
Resul t Set columns. A for loop is used to retrieve each of the
columns in the Resul t Set using the get Cbj ect method.

The object containing the columns is then cloned using the Coj ect
class method clone. This cl oned object is then added to the

Resul t sBuf f er Vect or object. The elements in the columns Vect or
then is cleared for the next iteration.

Java objects are passed by reference, so passing the original
‘ (bj ect object would lead to problems. Cloning the object
Neke | Makes a new copy thus effectively passing the object by value.

addE!l enent (
voi d addEl enent (ResultSet rs) {
int x;

try {

/1 store the colums in a Vector
for (x = 1;
X <= rs.get MetabDat a() . get Col umCount () ;
X++)
col umms. addH enent ((Qpj ect) rs.get@ject(x));

/1l store the colums Vector in the Results Vector
Resul t sBuf f er. addH enent ((Cbj ect) col umms. cl one());
colums. renoveAl | El ement s() ;

}

catch (java.lang. Exception ex) {

ex. print StackTrace();

ELEMENTAT METHOD

The El enent At method is used to retrieve the Vect or element at
the index position passed into the method as a parameter. It returns
the element at the index position as an Cbj ect by calling the

143

144

el ement At method of the Resul t Buf f er . The result of the operation
is returned as an (bj ect reference.

hj ect ElenentAt(int targetlndex) {
Vector returnVector = null;

try {
returnvector = (\ector) ResultsBuffer.el enentAt(targetindex-1);

}

catch (java.lang. Exception ex) {
ex. printStackTrace();

return ((Object) returnVector);

NEXT

The next method retrieves the next sequential element in the
RSAr r ay. It increments the internal index element and then attempts
to retrieve the element at that position.

oj ect next () {

i ndex++;

return (ElenmentAt(index));

PrEvIOUS

The previ ous method retrieves the previous method in the array.
It first decrements the internal index and then attempts to retrieve the
previous element in the RSArr ay.

The complete code for this program is presented in Program 4.10.

Program 4.10 RSArrayGen.java
i nport java.sql.*;
i nport java.io.*;
i nport java.util.Vector;

class RSArray {
// instance vari abl es

int index = O;

/1l a vector of result sets
Vect or Resul tsBuffer = new Vector();

/1 a vector of rows (results colums and data val ues)
Vect or columms = new Vector();

voi d addEl enent (ResultSet rs) {
int Xx;

try {

/|l store the colums in a Vector

for (x = 1;
X <= rs. get Met aDat a() . get Col umCount () ;
X++)

col unms. addH enent (((oject) rs.getject(X));

[/l store the colums Vector in the Results
Vect or

Resul t sBuf f er . addEl enent ((bj ect)
col ums. cl one());

col ums. renoveAl | El ement s() ;

catch (java.l ang. Exception ex) {

ex. print StackTrace();

continued

145

e —
————
—— —
——
—
—
—
—
—
—
—
—
—
1
— _—
— —
——
—
—
—
—
—
—
—

146 }

[—eee- _
Cbj ect ElenentAt(int targetlndex) {

Vector returnVector = null;

try {
returnVector = (Vector) ResultsBuffer.elenentAt(

targetlndex-1);

}

catch (java.lang. Exception ex) {
ex. printStackTrace();

= }

return ((Qpbject) returnVector);

}

Obj ect next() {
i ndex++;

return (Elenent At (index));

}

oj ect previous() {
i ndex ;

return (elementAt(index));

}

\xmmo\vy

This chapter has presented tutorials that demonstrated both the
basics of JDBC and more advanced topics. The first example covered
basic database access with JDBC and demonstrated the process of
creating a connection to a database and retrieving data.

The process of retrieving and processing data with the JDBC
Resul t Set, a requirement for almost all JDBC applications, was
demonstrated in several code examples. The important topics covered
in the chapter are as follows:

« Database metadata reveals information about the nature of the
database connection.

e Resul t Set metadata reveals information about the nature of the
results returned from the database.

e Using the Prepar edSt at enent class to prepare a SQL statement
provides performance gains and can simplify coding.

 To overcome the JDBC limitation of unidirectional cursors, results
can be stored in a Vect or object; this Vect or object can then be
used to access data randomly.

\kniug Up

One of the primary uses of Java is to create applets. The following
chapter provides an uncomplicated version of JDBC usage in an
applet. This applet displays an applet window, retrieves data into a
Resul t Set vector, and then allows the user to browse the data mov-
ing both forward and backward through the data.

147

