
JDBC TUTORIAL

Every program has unique requirements for database access; some
need to browse a database, selecting a set of rows in order to allow
users to move forward and backwards through the set; other applica-
tions need to perform a series of updates to a set of related tables that
must be treated as a complete, atomic transaction, where multiple
rows in the update must be treated as a single row.

Some applications contain a fixed set of selection criteria for data,
while others require that parameters be provided at runtime. There are
yet other applications that may know nothing about the capabilities

79

CHAPTER4
AA Simple JDBC Application

PPrepared Statement to Improve Performance

TTransactions with JDBC

PPositioned Cursor Updates

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
of the database to which they are connected, so they must discover
the capabilities of the database. Demonstrating a single application
with JDBC cannot cover the full spectrum of functionality we refer-
ence here; a series of JDBC examples is required.

Java applications are now used primarily as applets; this more like-
ly than not represents the most common usage of JDBC applications
for the near future. But it is reasonable to expect that over time Java,
with its array of features, will be accepted as a general-purpose lan-
guage. Once it has been accepted, Java with JDBC will be used for a
variety of general-purpose applications such as CGI programming,
reports, and data entry programs.

This tutorial demonstrates the use of JDBC first in a series of sim-
ple applications, then in an applet and CGI application. The simple
applications demonstrate the basics of JDBC usage: loading a
database driver, creating a Connection object, creating a
Statement object, executing a SQL statement with the Statement
object and returning a ResultSet, and retrieving rows of data
using the ResultSet object. Database access with JDBC will
always represent some variation of these calls and additional calls
as needed.

Code examples are also used to demonstrate JDBC usage with
applets. This represents a variation on the simple code example; with
applets, JDBC methods are usually called during button events to
retrieve and display data to the applet window

A very common application currently used with World Wide Web
HTML pages is the CGI application. The CGI example in this chap-
ter uses JDBC to retrieve data from a database; it demonstrates a CGI
application that receives a set of parameters, parses the parameters,
and returns data formatted as an HTML page.

One of the limitations of the current implementation of JDBC is
that a ResultSet can only be reviewed in serial order—the cursor
cannot move backwards. An example demonstrated in this chapter
provides a solution that allows rows to be retrieved in any order.

The overall goal of the tutorial section is to demonstrate the use of
JDBC to program simple to moderately difficult database access.
Complete examples are used to provide a clear understanding of the
context of the application.

Tutorials are provided for the following topics:

80

• A Simple JDBC Application

• Use of the Prepared Statement

• Positioned Cursor Update

• Transaction Modes

• Java Applet

• Metadata Usage

• ResultSet Array

These examples are be explained in more detail in the following
sections.

AAAA SSSS iiii mmmm pppp llll eeee JJJJ DDDD BBBB CCCC AAAA pppp pppp llll iiii cccc aaaa tttt iiii oooo nnnn
This simple tutorial demonstrates the use of JDBC to create a
Connection object and connect to the database; create a Statement
object and execute a SQL statement using the Statement object;
retrieve the results of the Statement in a ResultSet object; and to
display the data in the ResultSet.

This example uses a class and a series of methods to

1. Create a database table

2. Insert data into the table

3. Select data from the table

4. Update rows in the table

5. Delete rows from the table

This list of database activities represents a broad spectrum of
database functions; most database access programs are required to
perform some or all of these functions.

Two types of SQL statements are demonstrated in this tutorial:
Data Definition Language (DDL) statements and Data Manipulation
Language (DML) statements. The DDL statements are used to create
a database table and an index; for JDBC purposes, these statements
are update statements executed with the executeUpdate method
because they do not return data. They do however, return an integer
value for the number of rows updated.

4
J

D
B

C
 T

u
to

ri
a
l

81

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e

UUUU ssss eeee oooo ffff tttt hhhh eeee PPPP rrrr eeee pppp aaaa rrrr eeee dddd
SSSS tttt aaaa tttt eeee mmmm eeee nnnn tttt
Once stored for a statement, this process of parsing and optimizing
need not be repeated as long as the structure and database objects in
the statement do not change. Since the overhead of parsing and opti-
mizing a statement can be avoided during each execution of a SQL
statement, a prepared statement is more efficient than regular execu-
tion of a SQL statement.

A JDBC prepared statement allows parameters to be identified
within a SQL statement. The parameters are usually limited to those
values that vary from execution to execution of the statement.

The prepared statement examples presented here demonstrate the
use of a prepared statement to improve performance and allow
parameter substitution.

PPPP oooo ssss iiii tttt iiii oooo nnnn eeee dddd CCCC uuuu rrrr ssss oooo rrrr UUUU pppp dddd aaaa tttt eeee
In many databases, you can create a cursor to maintain a pointer to a
specific row in a table. This pointer or position indicates where the
current row pointer is located. When the application needs to update
the table being read using the cursor, it uses the cursor to update the
record at the current record position; this is known as a positioned
cursor update.

The syntax for the positioned cursor update, if supported by the tar-
get database, is usually a SQL select statement clause, which iden-
tifies the select statement as a statement to be used to create a cur-
sor. Once the statement with the “for update of” clause has been
declared, the cursor name is retrieved to create the update statement.
The update statement SQL string includes the “where current of”
clause followed by the cursor name.

TTTT rrrr aaaa nnnn ssss aaaa cccc tttt iiii oooo nnnn MMMM oooo dddd eeee ssss
Database transaction modes enable varying degrees of transaction
integrity to be used during program execution. An application can
switch from a mode where uncommitted records can be read and

82

records updated by the application can be read by other users, to a
mode where only committed records can be read by an application
and no records that have been updated by an application can be read
by other users. This use of granularity in transactions allows for bet-
ter performance and increased concurrency when an application does
not need to limit it (such as a report). But more limited concurrency
may be necessary when an application needs to update several tables
within a transaction and commit the rows to the database as a trans-
action.

The transaction example demonstrates the use of transaction
modes by creating a database connection and then setting the isola-
tion mode for the database connection through the appropriate
Connection method. The JDBC API does not provide an explicit
“begin work” statement. Using the “commit work” statement, all cur-
rent database transactions from the session are sent to the database
when the statement is executed.

This example executes the commit Connection method to commit
the current updates to the database. A series of statements is then exe-
cuted followed by another commit method invocation to commit the
transaction to the database. Should the transaction fail due to some
error, the catch code block contains a rollback method call to roll
back the database to a current state. One of the current shortcomings
of the JDBC interface is that it does not provide a means of scrolling
through a ResultSet both forward and backward; this capability is
known as scroll cursors. This feature is useful for a database browse
application for which the user must enter selection criteria and then
move backwards and forwards through the returned set of rows

The solution to this problem is to store the ResultSet in a Java
Vector object. The Vector has the ability to grow dynamically and
provides the ability to address a specific element. The result set array
example demonstrates this capability.

JJJJ aaaa vvvv aaaa AAAA pppp pppp llll eeee tttt
The Java applet currently represents one of the principal uses of the
Java language. A Java applet can be downloaded off the Internet and
run through a browser. This capability has been a large part of the
reason for the incredible popularity of the Java language.

4
J

D
B

C
 T

u
to

ri
a
l

83

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
A Java applet that can access a database is a powerful programming

tool. This application is platform-independent and, when placed at a
single location, can be distributed to multiple client computers by
simply being downloaded as a Java applet through a link in the HTML
page.

But a Java applet run through a browser is currently subject to cer-
tain security restrictions depending on the browser being used. For
instance, a Java applet that has been downloaded cannot access any
local files on the client machine. An application that wants to create
a Microsoft Access table and insert rows into the table would fail as a
downloaded applet if the Microsoft Access database builds files on
the local machine.

The example shown here uses a Microsoft Access database that
resides on the local machine. It runs successfully using the Sun
appletviewer application where security is relaxed. It does not run
using the more restrictive Netscape browser.

This example will first display an input form to the application win-
dow. Using the buttons available in this window, the user can browse
the data available in the database. Search criteria can be entered and
then used to retrieve rows from the database. Users can optionally
move forward or backwards through the ResultSet by pressing but-
tons in the application window.

CCCC GGGG IIII AAAA pppp pppp llll iiii cccc aaaa tttt iiii oooo nnnn
In today’s world of World Wide Web/Internet application program-
ming, CGI applications are ubiquitous. While use of JDBC in applets
can eliminate the need for many of these CGI programs, security
restrictions and performance improvements could still make CGI pro-
gramming a viable alternative. And Java, as a flexible general-purpose
language, could fill this role.

If it is desirable to have the applet or a HTML page connect to a
database on a server other than the Internet server, there are a num-
ber of good reasons why you would not want to expose that machine
to the Internet and would prefer to have the HTTP server process and
manage the connection.

In order to connect to this machine, a third-tier application is need-
ed as a middle tier between the client applet and the database server.
A CGI application is a viable approach to programming this third tier.

84

Such a CGI application can receive a request, retrieve the data, and
then format the data for return as an HTML page. The CGI tutorial
application demonstrates a Java program that could provide output
for such a CGI application.

MMMM eeee tttt aaaa dddd aaaa tttt aaaa UUUU ssss aaaa gggg eeee
There is a rich supply of metadata methods available in JDBC. An
application can use these methods to discover information about the
database to which it is connected—a task that could be a requirement
for a Java applet that needs to connect to multiple databases. These
examples demonstrate the use of many of the metadata functions
available in JDBC.

RRRR eeee ssss uuuu llll tttt SSSS eeee tttt AAAA rrrr rrrr aaaa yyyy EEEE xxxx aaaa mmmm pppp llll eeee
One of the limitations of the current release of JDBC is that result sets
can only be retrieved in a serial fashion. The ResultSet methods
only retrieve the next row; the previous row cannot be retrieved.
Using a technique that stores retrieved rows in an internal list (a Java
Vector), data can be retrieved for the current row, the previous row,
and for a specific row in the result set. This technique is demonstrat-
ed in the ResultsSet array example and the three-tiered application
example.

Basic JDBC Programming

This chapter presents the basic steps involved in creating JDBC
programs. The first example in this chapter demonstrates the basic set
of calls required to use JDBC with Java. These steps are:

1. Load driver

2. Create connection

3. Create statement

4. Execute statement and return ResultSet or result count

5. Iterate ResultSet if returned

4
J

D
B

C
 T

u
to

ri
a
l

85

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
The use of JDBC usually involves some combination of these calls in

addition to other calls to metadata or transaction control methods. The
calls listed here must be made in sequence—you must have a
Connection object before a Statement object can be created, and you
must have a Statement object before a SQL statement can be executed.

Results are returned in a ResultSet, the JDBC equivalent of a cur-
sor. The JDBC ResultSet provides methods for iterating the results
and retrieving individual columns. Specific methods are used to
retrieve specific data types. In the event an update is executed, an
integer result count is returned.

The ResultSet retrieved contains, as the name implies, the set of
results retrieved by the query. These results may be iterated, but only
sequentially; there is no capability to move backwards through the
result set or to move a specific set of positions. A work-around for this
limitation is demonstrated later in this section.

The design of JDBC has kept methods and their arguments sim-
ple. To reduce the number of parameters to be passed to
methods, additional methods were added to span the func-
tionality needed. So, instead of designing a method with three

parameters, one that would indicate the call type and two others that may
or may not be needed depending on the call type, JDBC developers
would create three separate methods.

To discover some basic information about the ResultSet, a
ResultSet metadata object must be obtained. This metadata object
will provide information such as the number of columns in the
ResultSet, the data type of the columns, and the size and precision
of the column. As some of the examples in this chapter demonstrate,
it is possible to convert the basic data types from the ResultSet to a
string and display or manipulate the data in that format.

If you know and are familiar with the database being used,
then metadata information probably won’t have to be
retrieved. In situations where this information is not known,
then the database metadata methods are available. Any

application that can possibly connect to databases from different
database vendors potentially needs metadata information. Such an
application might be a general-purpose database query tool that could
attach to either an Informix, Oracle, or Sybase database using JDBC

86

drivers. This application would need to discover the database to which
it was connected, the version of the database product, and potentially
the specific capabilities supported in that version. All of this information
is supplied by database metadata methods.

To discover information about the database or the result set, a meta-
data object can be instantiated using a DataBaseMetaData object or
a ResultSetMetaData object. These objects provide information
on the database, data types supported, or the number of columns
retrieved and their data types. It is not uncommon to retrieve some
metadata information about the database or the result set as is demon-
strated in the examples provided here.

BBBB aaaa ssss iiii cccc JJJJ DDDD BBBB CCCC SSSS tttt eeee pppp ssss
The following sections outline the basic steps necessary to create and
manage a database connection using JDBC. A specific set of methods
must be invoked each time a database connection is made and data is
retrieved.

Load Driver

The first step in using JDBC is to load the JDBC-ODBC bridge driv-
er. This is usually accomplished using the forName static method of
the Class object (which is part of the base Java system). The call is
made as follows:

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

When this call is made, the Java system searches for the class
requested and loads the driver. A class descriptor is returned by this
method, but because it is not needed, it is ignored.

Create Connection

The loading of the JDBC database driver does not connect to the
database; it merely creates an environment in the program where this
can be done. Before any database-specific SQL statements can be

4
J

D
B

C
 T

u
to

ri
a
l

87

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
executed, a connection must be established to the database. This is
accomplished through a call to the DriverManager getConnection
method to find a specific driver that can create a connection to the
URL requested.

The DriverManager searches through registered drivers until
one is found that can process the database URL that was specified.
If a driver cannot be found, an exception is thrown and code exe-
cution will not continue for that method. Code that follows this
statement can therefore assert that no exception was thrown and a
connection has been successfully established. The call is made as
follows:

String url = "jdbc:odbc:msaccessdb";

Connection con = DriverManager.getConnection (url,
"", "");

In this example, the getConnection method is invoked with a
String containing the URL for the database and two additional
String parameters, one for the user name and one for the user pass-
word.

The familiar universal resource locator (URL) is used to sup-
ply the naming system for the database resource to be load-
ed. The format of the URL name is:

jdbc:subprotocol:subname

where subprotocol indicates the access method used in addition to
JDBC and the subname is a name that has significance for the subproto-
col being used.

In this case, the JDBC-ODBC bridge is being used and ODBC is the
subprotocol, the protocol being used as a bridge to provide database
connectivity. The subname in this case is the data source name for
the ODBC connection. In this example, the data source name is
msaccessdb, a local client Microsoft Access database. The specifics
of the database name and location are mapped through the ODBC driv-
er facilities provided.

88

Create Statement

In order to interact with the database, SQL statements must be exe-
cuted. This requires that a Statement object be created to manage the
SQL statements. This is accomplished with a call to the Connection
class createStatement method as follows:

Statement stmt = con.createStatement();

This call creates a Statement object using the established database
connection. The Statement class provides methods for executing SQL
statements and retrieving the results from the statement execution.
Note that result sets (or cursors) are not part of the Statement class
but are represented through a separate class, the ResultSet class.

Execute SQL Statement and Return ResultSet

The SQL Statement object does not have a specific SQL statement
associated with it (unlike the PreparedStatement superclass, which
does). The SQL statement to execute is determined when the call to
executeQuery is made, as follows:

String qs = "select * from orders";

ResultSet rs = stmt.executeQuery(qs);

This call sends the query to the database and returns the results of
the query as a ResultSet. Should an error be generated during the
execution of the query, an exception is generated and caught using the
catch code block. Successful execution of the executeQuery moves
control to the next line of code following the statement, which in this
example begins iterating the query results.

Iterate ResultSet

The ResultSet represents the collection of results from the query.
The ResultSet class contains methods that can be used to iterate
through these results in a serial fashion. First, you must make a call to
the next method in order to position the pointer (or cursor) before
the first element of the result set, as follows:

boolean more = rs.next();

4
J

D
B

C
 T

u
to

ri
a
l

89

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
The call to the next method returns a boolean value. The boolean

value of true indicates that the call was successful and the pointer is
positioned, thus there is data to retrieve. A boolean value of false
indicates that the call was unsuccessful and there are no rows to
retrieve. Because it is not an error to execute a SQL select statement
that returns no rows, this first call to the next method reveals whether
or not the query returned any rows—a value of false would indicate
no rows have been retrieved.

Next, a while loop is executed to step through the results in the
ResultSet. The loop control is the boolean variable more returned
by the first call to the next method. As long as this value is true, the
loop continues to execute.

Within the loop, the value of the first column of the result set is dis-
played and the next method is called to position the pointer to the
next row. If the next method returns false, then the loop does not
continue execution and control is passed to the statement after the
end of the while loop, as follows:

while (more) {

System.out.println("Col1: " +
rs.getInt("col1"));

more = rs.next();

}

The complete code for the simple select program is shown in
Program 4.1.

Program 4.1 Select1.java
import java.sql.*;

import java.io.*;

class Select1 {

public static void main(String argv[]) {

try {

Class.forName ("jdbc.odbc.JdbcOdbcDriver");

90

continued

String url = "jdbc:odbc:msaccessdb";

Connection con = DriverManager.getConnection (url, "",
"");

String qs = "select * from loadtest";

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(qs);

boolean more = rs.next();

while (more) {

System.out.println("Col1: " +

rs.getInt("col1"));

more = rs.next();

}

}

catch (java.lang.Exception ex) {

// Print description of the exception.

System.out.println("** Error on data select. ** ");

ex.printStackTrace ();

}

}

}

A Dynamic SQL Select Program

The previous program used a specific SQL select statement to
retrieve rows and display a single column of data from the database
table. The following example presents a more generic approach to
processing a SQL select statement. The program accepts a single
command line argument: the name of the table to query. It uses this
table name to build a query for all the columns and all the rows in the
specified table. The query is executed and the results are displayed to
the terminal screen.

Because the query is built at runtime, the number and names of
the columns are not known when the program is compiled. This

4
J

D
B

C
 T

u
to

ri
a
l

91

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
information must be determined by retrieving metadata informa-
tion on the ResultSet using the ResultSetMetaData object for
the ResultSet returned by the query. This example does not deal
with the problem of determining the data type of the column

92

The next method and data retrieval

Note that calls to the ResultSet next
method do not return data. They merely posi-
tion the pointer to the next row in the result
set. Successive calls to the appropriate “get”
method for the data types of the columns
must be made to retrieve the data (for
example, getInt, getString,
getNumeric). The programmer must know
the data types of the columns and call the
correct method. Alternatively, if simple display
of data is required and the programmer does
not know the data type of the column being
retrieved, each column value can be
retrieved as a String regardless of data
type, as follows:

System.out.println("Col1: " + rs.getString("col1"));

In this example, the value of column 1 is
retrieved as a String even though the col-
umn in the database is defined as an inte-
ger. This approach obviously has its limitations
with data types such as BIT and BINARY, but
could be useful with some of the more simple
data types.

(which is easily available with the getType ResultSetMetaData
method) but simply treats each column as a Java String and dis-
plays the data in the column as returned by the getString
ResultSet method. The steps used in executing this program are
as follows:

1. Load driver and get database connection

2. Retrieve table name from command line argument

3. Build select statement

4. Create statement object and execute SQL statement

5. Create a ResultSetMetaData object

6. Traverse the ResultSet

Each of these steps are detailed in the following sections.

Load Driver and Get Database Connection

The database driver is loaded and the connection is made as shown
in the previous example. The same ODBC data source is used for this
connection, as follows:

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

String url = "jdbc:odbc:msaccessdb";

Connection con = DriverManager.getConnection (

url, "", "");

The forName method is used to load the JDBC-ODBC bridge class.
The URL string is created with reference to the ODBC MicroSoft-
Access database used in the example. This string is then passed as a
parameter to the getConnection method of DriverManager, which
then returns the Connection object.

Retrieve Table Name from
Command Line Argument

This program retrieves the table name to query as a command line
argument. This code determines only whether or not an argument
has been passed to the program. A String variable is declared and
initialized to the value of a valid table name for the database. If an

4
J

D
B

C
 T

u
to

ri
a
l

93

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e

94 argument has been passed to the program, it is stored in a String
variable named tableName as shown in the following snippet. If an
argument has not been passed to the program, the variable retains the
original value of the table name.

String tableName = "loadtest";

if (argv.length > 0)

tableName = argv[0];

Build Select Statement

The SQL select statement is built by concatenating a select col-
umn list clause with the table name stored in the tableName variable.
The code for this is as follows:

String qs = "select * from " + tableName;

No where clause is appended to the SQL select statement; the
query will retrieve all rows from the database table.

Create Statement Object and Execute
SQL Statement

Then the Statement object is created using the Connection object
and the SQL statement is executed using the executeQuery method,
as follows:

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(qs);

The executeQuery method returns a ResultSet, which is then
processed as shown in the following steps.

Create a ResultSetMetaData Object

A ResultSetMetaData object is then created. This is used to
determine the characteristics of the ResultSet that has been
retrieved. The ResultSet getMetaData method is used to retrieve
this object, as follows:

ResultSetMetaData rsmd = rs.getMetaData();

Traverse the ResultSet

The code used to retrieve and display the ResultSet follows. First
an integer index variable is created and the next method is called for
the ResultSet. Calling the next method positions the pointer for the
ResultSet at the first result row and determines whether or not there
are any rows to retrieve. The boolean return value from the next
method (a Java boolean variable named more) is then used to con-
trol a while loop, as follows:

int n = 0;

boolean more = rs.next();

while (more) {

for (n = 1; n <= rsmd.getColumnCount(); n++) {

System.out.println("Col " + n +

" Name: " + rsmd.getColumnName(n) +
" value: " + rs.getString(n));

}

}

For each iteration of the while loop, all columns in the row are
retrieved and displayed. This is accomplished using an inner for loop
that iterates up to the count returned by the getColumnCount
method of ResultSetMetaData. For each column value returned, a
call to the ResultSetMetaData getColumnName method returns the
column name. Each column value is returned as a String value using
the getString method of the ResultSet class.

The complete code for the dynamic SQL select program is shown
in Program 4.2.

Program 4.2 selectgen.java
import java.sql.*;

import java.io.*;

class SelectGen {

public static void main(String argv[]) {

try {

4
J

D
B

C
 T

u
to

ri
a
l

95

continued

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
Class.forName ("jdbc.odbc.JdbcOdbcDriver");

String url = "jdbc:odbc:msaccessdb";

Connection con = DriverManager.getConnection (

url, "", "");

String tableName = "loadtest";

if (argv.length > 0)

tableName = argv[0];

String qs = "select * from " + tableName;

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(qs);

ResultSetMetaData rsmd = rs.getMetaData();

int n = 0;

boolean more = rs.next();

while (more) {

for (n = 1; n <=

rsmd.getColumnCount(); n++) {

System.out.println("Col " + n +

" Name: " +

rsmd.getColumnName(n) +

" value: " +

rs.getString(n)
);

}

}

}

catch (java.lang.Exception ex) {

96

continued

// Print description of the exception.

System.out.println("** Error on data select. ** ");

ex.printStackTrace ();

}

}

}

PPPP rrrr eeee pppp aaaa rrrr eeee dddd SSSS tttt aaaa tttt eeee mmmm eeee nnnn tttt
Each SQL query presented to the database engine must be pro-
cessed before data can be retrieved or updated. The database engine
must determine whether or not the SQL statement presented to it is
syntactically correct, whether the database objects referenced exist
in the engine, and whether the data type conversions necessary can
be performed. These basic operations are known as parsing the
SQL statement. In addition to parsing the query, the database
engine must make decisions about what the best access path is to
process the SQL statement. This process is known as optimizing
the SQL statement. Both of these operations require a certain
amount of overhead in the database engine. If a query is to be per-
formed many times with the same structure, then it may be better to
perform these operations once and merely substitute parameters
for the portions of the query that change with each successive
execution. This can be accomplished with JDBC using the
PreparedStatement class.

The PreparedStatement class allows a SQL statement to be pre-
pared with place-holders for the parameters. These place-holders are
usually the “?” character and they can only be used to create param-
eters for certain portions of the SQL statement. Many databases do
not allow database objects (table and column names) to be substitut-
ed with parameters.

(This does not preclude creating queries at runtime where the table
names and column names are not known. This can still be accom-
plished by building a String with the query and using the
executeQuery or executeUpdate method of the Statement class
to execute the SQL statement.)

4
J

D
B

C
 T

u
to

ri
a
l

97

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
Using PreparedStatement for data retrieval offers performance

improvements over queries executed with the Statement class meth-
ods. The code shown in this example was used to test this claim. A
version of this program (included at the end of this section) contains
the same SQL statement execution but instead of preparing the state-
ment, the SQL statement is created using string concatenation and
then is executed using the executeQuery method of the Statement
class. This version of the program took 126 seconds to complete 2000
iterations. The same SQL statement executed using a prepared state-
ment completed in 24 seconds.

The use of a PreparedStatement also provides a convenient way
to define queries in a single location in the code, and then using the
prepared statement (represented by a PreparedStatement object)
throughout the program.

The program shown here creates and executes a prepared SQL
statement in the following steps.

1. Load driver and create connection

2. Create query string with parameters and create
PreparedStatement object

3. Set parameter value and execute query

4. Loop for 2000 iterations

Load Driver and Create Connection

As shown previously, the database driver is loaded and the con-
nection to the database is made. The same ODBC data source is used
for this connection, as follows:

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

String url = "jdbc:odbc:msaccessdb";

Connection con = DriverManager.getConnection (

url, "", "");

The forName method is used to load the JDBC-ODBC bridge class.
The URL string is created with reference to the ODBC MicroSoft-
Access database used in the example. This string is then passed as a
parameter to the getConnection method of DriverManager, which
then returns the Connection object.

98

Create Query String with Parameters
and Create PreparedStatement Object

A String used to hold the query is created and assigned an initial
value of the SQL select statement with the placeholder in the where
clause, as follows:

String qs = "select * from loadtest where col1 = ? ";

PreparedStatement prepStmt = con.prepareStatement(qs);

The PreparedStatement object, prepStmt, in combination with
the setInt method in the preparedStatment class, is now used to
execute the statement throughout the program.

Set Parameter Value and Execute Query

The goal of this program is to demonstrate the performance
improvement that can be realized with the execution of prepared SQL
statements. The starting time and ending time therefore are tracked
using a series of calls to a java.util.Date object, as follows:

Date dt = new Date();

long seconds = dt.getTime();

String startTime =
DateFormat.getTimeInstance().format(dt);

System.out.println("Start Time: " +
startTime);

int n = 3;

boolean result;

prepStmt.setInt(1, n);

ResultSet rs = prepStmt.executeQuery();

The value of the prepared statement parameter must be set before
the query is executed. This is accomplished using the setInt method
to set the value of the parameter. The setInt method takes two
arguments, an integer value indicating the position of the parameter
(starting from position 1) in the query statement and an integer value

4
J

D
B

C
 T

u
to

ri
a
l

99

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
to set the parameter at that position. Once the parameter is set, the
executeQuery method of the PreparedStatement class is called to
execute the statement and return a ResultSet representing the
results of the query.

Loop for 2000 Iterations

In the next step, the result set is positioned before the start of the
first set and the loop is started. In this test, data is not actually
retrieved and displayed (this does not significantly affect the results).
For each iteration, the previous ResultSet is closed, the
PreparedStatement parameter is set to the new value using the
index variable for the for loop, and the executeQuery method is
called and the new ResultSet is retrieved using the same object con-
tainer that was previously used.

boolean more = rs.next();

for (; n < 2000 && more ; n++) {

rs.close();

prepStmt.setInt(1, n);

rs = prepStmt.executeQuery();

more = rs.next();

}

Date dtEnd = new Date();

long endSeconds = dtEnd.getTime();

String endTime =
DateFormat.getTimeInstance().format(dtEnd);

System.out.println("End Time:" + endTime);

// display elapsed time

seconds = (endSeconds - seconds)/1000;

System.out.println("Elapsed time: " + seconds +

" seconds for " + n + " records.");

When the loop is complete, the ending time and the elapsed time
are calculated and displayed to the terminal screen.

The complete code for this example is shown in Program 4.3.

100

Program 4.3 preptest2.Java
import java.sql.*;

import java.io.*;

import java.util.Date;

class PrepTest2 {

public static void main(String argv[]) {

try {

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

String url = "jdbc:odbc:msaccessdb";

Connection con = DriverManager.getConnection (

url, "", "");

String qs = "select * from loadtest where col1 = ? ";

PreparedStatement prepStmt =
con.prepareStatement(qs);

Date dt = new Date();

long seconds = dt.getTime();

String startTime = DateFormat.getTimeInstance()
.format(dt);

System.out.println("Start Time: " + startTime
);

int n = 3;

boolean result;

prepStmt.setInt(1, n);

ResultSet rs = prepStmt.executeQuery();

boolean more = rs.next();

for (; n < 2000 && more ; n++) {

rs.close();

prepStmt.setInt(1, n);

rs = prepStmt.executeQuery();

4
J

D
B

C
 T

u
to

ri
a
l

101

continued

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
more = rs.next();

}

Date dtEnd = new Date();

long endSeconds = dtEnd.getTime();

String endTime =
DateFormat.getTimeInstance().format(dtEnd);

System.out.println("End Time:" + endTime);

// display elapsed time

seconds = (endSeconds - seconds)/1000;

System.out.println("Elapsed time: " + seconds +

" seconds for " + n + "
records.");

}

catch (java.lang.Exception ex) {

// Print description of the exception.

System.out.println("** Error on data select. ** ");

ex.printStackTrace ();

}

}

}

The following code example shows the creation and execution of a
query statement to process the same number of records but uses a
Statement object instead of a PreparedStatement to process the
SQL statement. The query statement is created within the processing
loop using the following code.

String qs = "select * from loadtest where col1 = ";

...

queryString = qs + n;

rs = stmt.executeQuery(queryString);

102

Because the new value for the selection criteria cannot be related
to a parameter, with each iteration of the loop the query string must
be re-created and then must be executed using the executeQuery
method of the Statement class. The query string has been defined as
a string with the column select criteria missing. This information can
be appended to the query string to complete the statement and is done
for each iteration of the loop, as shown in Program 4.4.

Program 4.4 preptest1.Java
import java.sql.*;

import java.io.*;

import java.util.Date;

import java.tsxt.DateFormat;

class PrepTest1 {

public static void main(String argv[]) {

try {

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

String url = "jdbc:odbc:msaccessdb";

Connection con = DriverManager.getConnection (

url, "", "");

Statement stmt = con.createStatement();

Date dt = new Date();

long seconds = dt.getTime();

String startTime = DateFormat.getTimeInstance()
.format(dt);

System.out.println("Start Time: " + startTime);

int n = 1;

String qs = "select * from loadtest where col1 = ";

4
J

D
B

C
 T

u
to

ri
a
l

103

continued

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
String queryString = qs + n;

ResultSet rs = stmt.executeQuery(queryString);

boolean more = rs.next();

for (; n < 2000 && more ; n++) {

queryString = qs + n;

rs = stmt.executeQuery(queryString);

more = rs.next();

}

Date dtEnd = new Date();

long endSeconds = dtEnd.getTime();

String endTime =
DateFormat.getTimeInstance().format(dtEnd);

System.out.println(End Time: + endTime);

// display elapsed time

seconds = (endSeconds - seconds)/1000;

System.out.println("Elapsed time: " + seconds +

" seconds for " + n + " records."
);

}

catch (java.lang.Exception ex) {

// Print description of the exception.

System.out.println("** Error on data insert. ** ");

ex.printStackTrace ();

}

}

}

104

PPPP oooo ssss iiii tttt iiii oooo nnnn eeee dddd CCCC uuuu rrrr ssss oooo rrrr UUUU pppp dddd aaaa tttt eeee
It is not uncommon for an application to read data with a cursor and
then update rows selectively based on information gathered during
the data retrieval process. It is convenient and more efficient simply
to update “the current row” of the cursor rather than to create selec-
tion criteria and execute another SQL statement to search for and
then update the record. The additional statement execution could
require an index read and possibly additional data retrieval.

The positioned cursor update (or update cursor) provides func-
tionality that eliminates the need to query for an update of a current
record. This capability is supported in JDBC provided the database
being used supports it. This example performs the following steps:

1. Load database driver and create connection

2. Create DatabaseMetaData object and test for positioned
update functionality

3. Execute select query

4. Get cursor name and execute update statement

5. Review results

Load Database Driver and Create Connection

The JDBC-ODBC bridge driver is loaded as in the previous steps.
The only difference in this case is that the database driver loaded is
the Informix database driver. This driver is needed because the
Microsoft Access database used in the previous examples does not
support positioned update as of this writing.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

String url = "jdbc:odbc:informix5";

Connection con = DriverManager.getConnection (

url, // database URL

"usera", // user name

"xxxxx"); // user password

4
J

D
B

C
 T

u
to

ri
a
l

105

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
The call to create the Connection object includes values for the

user name and password. These values are required by the Informix
database being used.

Create DatabaseMetaData Object and Test
for Positioned Update Functionality

Once the connection is established, the program tests for the abil-
ity to perform positioned updates. This is accomplished using the
DatabaseMetaData object for the database connection.

// need a database that supports positioned updates

DatabaseMetaData dmd = con.getMetaData();

if (dmd.supportsPositionedUpdate() == false)
{

System.out.println(

"Positioned update is not supported by this
database.");

System.exit(-1);

}

The DatabaseMetaData object is created using the getMetaData
method of the Connection object. The DatabaseMetaData class
contains a supportsPositionedUpdate method that returns true if
positioned updates are supported and returns false if they are not. In
the previous code snippet, if the supportsPostionedUpdate
method returns false then an error message is printed to the terminal
screen and the program terminates.

Execute Select Query

Two Statement objects are used to perform the database opera-
tions: one Statement to retrieve the data and set the cursor position
and the other to perform the update. The statement executed to
retrieve the data is created and executed as follows:

Statement stmt1 = con.createStatement();

ResultSet rs = stmt1.executeQuery("select " +

" * from loadtest where col1 = 5" +

" for update ");

106

This statement is executed using a select statement that ends with
the clause “for update.” This indicates to the database engine that the
cursor may be used later to perform an update.

Get Cursor Name and Execute
Update Statement

The common SQL syntax for performing a positioned update is

update <table_name>

set <column_list> = <value_list>

where current of <cursor_name>

The cursor name is needed to perform a positioned update. This
name is obtained using the getCursorName method of the
ResultSet class as shown:

String cursName = rs.getCursorName();

System.out.println("cursor name is " + cursName);

Statement stmt2 = con.createStatement();

// update stmt2 at col1 = 5

int result = stmt2.executeUpdate(

"update loadtest set col2 = 1000 " +

" where current of " + cursName);

A second Statement is created and the cursor name is used to cre-
ate the update statement executed with the executeUpdate method
of the Statement class. The cursor name is appended to the clause
“where current of” to identify a cursor for the positioned update
statement.

Review Results

This example then executes another statement that retrieves data
from the updated row. This data is then displayed to the terminal
screen to validate that the update has taken place, as shown in the fol-
lowing code:

4
J

D
B

C
 T

u
to

ri
a
l

107

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
// retrieve row to view updated value

rs = stmt1.executeQuery("select * from loadtest " +

" where col1 = 5 ");

rs.next();

System.out.println(" col1 = " + rs.getInt(1) +

" col2 = " + rs.getInt(2));

The complete code for this example is shown in Program 4.5.

Program 4.5 posupd.java
import java.sql.*;

import java.io.*;

class PosUpd {

public static void main(String argv[]) {

try {

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

String url = "jdbc:odbc:informix5";

Connection con = DriverManager.getConnection (

url, "usera", "xxxxx");

// need a database that supports positioned updates

DatabaseMetaData dmd = con.getMetaData();

if (dmd.supportsPositionedUpdate() == false) {

System.out.println(

"Positioned update is not supported by this database.");

System.exit(-1);

}

Statement stmt1 = con.createStatement();

108

continued

ResultSet rs = stmt1.executeQuery("select " +

" * from loadtest where col1 = 5" +

" for update ");

rs.next(); // look at the first row (col1=5)

String cursName = rs.getCursorName();

System.out.println("cursor name is " +
cursName);

Statement stmt2 = con.createStatement();

// update stmt2 at col1 = 5

int result = stmt2.executeUpdate(

"update loadtest set col2 = 1000 " +

" where current of " + cursName);

// retrieve row to view updated value

rs = stmt1.executeQuery("select * from
loadtest " +

" where col1 = 5 ");

rs.next();

System.out.println(" col1 = " + rs.getInt(1) +

" col2 = " + rs.getInt(2));

}

catch (java.lang.Exception ex) {

// Print description of the exception.

System.out.println("** Error on data select. ** ");

ex.printStackTrace ();

}

}

}

4
J

D
B

C
 T

u
to

ri
a
l

109

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e

TTTT rrrr aaaa nnnn ssss aaaa cccc tttt iiii oooo nnnn MMMM oooo dddd eeee ssss
Transactions provide the capability to treat a series of SQL update
statements as a single statement; if any statement fails, the entire set
of updates is removed from the database. If a database supports trans-
actions, JDBC provides the facilities to use these transactions.

With JDBC, if a database supports transactions and transaction log-
ging is on, then every statement is treated as though a transaction
were open. There is no explicit “begin work” to indicate the start of a
transaction because the database is always in a transaction. A commit
method is available in the Connection class to commit all current
work to the database and begin a new transaction. This effectively
executes a “begin work” against the database.

A JDBC connection begins with the database in auto-commit
mode. This means that every SQL statement executed is treated as an
individual transaction; no statements will be grouped together as
transactions. This mode must be changed using the setAutoCommit
method of the Connection class. The following steps are involved in
the creation of the transaction modes example.

1. Load driver and create connection

2. Set the auto-commit mode

3. Create statement and execute DDL and DML

4. Commit work

5. Create prepared statement and execute updates

6. Rollback work and examine results

7. catch code block

These steps are detailed in the sections that follow.

Load Driver and Create Connection

The JDBC-ODBC bridge driver is loaded first. The database driver
loaded is the Informix database driver because support for transac-
tions is needed in this example.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

String url = "jdbc:odbc:informix5";

Connection con = DriverManager.getConnection (

110

url,

"usera",

"xxxxx");

The call to create the Connection object includes values for the
user name and password. These values were required by the Informix
database being used.

Set the Auto-Commit Mode

When the JDBC auto-commit mode is set to true, each SQL state-
ment is executed as a singleton transaction; if it completes success-
fully, there is an implied commit to the database. This mode would
preclude the grouping of a set of SQL statements as one single, atom-
ic transaction. Setting the auto-commit mode to false disables the
auto-commit feature and allows a group of SQL statements to be
grouped as a transaction.

// will turn off the default auto-commit mode so that statements

// can be grouped as transactions.

con.setAutoCommit(false);

Create Statement and Execute DDL and DML

A statement object is required to execute a series of SQL statements
to update the database. DDL statements are then executed to create a
database table and create an index on the database table.

Statement stmt = con.createStatement();

int result = stmt.executeUpdate(

"create table transtest(col1 int, col2 int, col3 char(10)
)");

result = stmt.executeUpdate(

"create index idx1 on transtest(col1) ");

Commit Work

If an error occurs during the execution of any of the previous SQL
statements, a SQLException is thrown and caught with the catch
code block in the method. This code block executes a SQL rollback,

4
J

D
B

C
 T

u
to

ri
a
l

111

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
which rolls back or removes from the database the results of the exe-
cution of the statements shown in the previous method. If code exe-
cution has arrived at the following line, then no fatal exception has
been thrown and the data can be committed to the database. This can
be accomplished using the commit method of the Connection class.

con.commit();

Note that in some databases, executing a commit or roll-
back would close open database statements, requiring
database objects to be re-opened after these operations.

Create Prepared Statement
and Execute Updates

To demonstrate multiple updates and transactions, a series of updates
will be performed as a single transaction. A preparedStatement object
is created using the prepareStatement method of the Connection
object. This returns a statement with a single parameter which is substi-
tuted before the statement is executed as shown below.

...

int n = 0;

PreparedStatement prepStmt = con.prepareStatement(

" insert into transtest values (?, 1, XXXXXXX) ");

for (n = 1; n < 20; n++) {

prepStmt.setInt(1, n);

prepStmt.executeUpdate();

}

Within the for loop, the single statement parameter is set and the
prepared statement is executed using the executeUpdate statement.
This loop will be executed and the database update performed 20
times. This entire set of updates will represent a single transaction.

112

Rollback Work and Display Results

To demonstrate the effect of a rollback work statement, the roll-
back method of the Connection object is executed. This rolls back
the work since the last commit. This means that the database table
and the index remain in the database after the rollback method has
been executed because these statements were executed before the
commit work method had been called.

con.rollback();

// validate that rollback succeeded. There should be

//no data in the table

Statement stmt1= con.createStatement();

ResultSet rs = stmt1.executeQuery("select * from transtest");

boolean more = rs.next();

if (more == false)

System.out.println("Data was rolled back ");

After the rollback work has been executed, a new statement is cre-
ated and executed to examine the data that remains. If no data is
found, this indicates that the table is still there, but there is no data in
the table—an indication that the rollback was successful.

catch Code Block

This section of code will be executed if an SQLException has been
thrown.

This indicates that an error has occurred and all of the statements in
the group should be rolled back. This rollback is performed as follows:

catch (SQLException ex) {

// Print description of the exception.

System.out.println("** Error on database update. Rolling back
... ** ");

con.rollback();

ex.printStackTrace ();

}

4
J

D
B

C
 T

u
to

ri
a
l

113

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e

114 Program 4.6 provides the complete code for the transaction mode
example.

Program 4.6 TransData.Java
import java.sql.*;

import java.io.*;

class TransData {

public static void main(String argv[]) {

try {

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

String url = "jdbc:odbc:msaccessdb";

Connection con = DriverManager.getConnection (

url, "", "");

// will turn off the default auto-commit mode so that
statements

// can be grouped as transactons.

con.setAutoCommit(false);

Statement stmt = con.createStatement();

int result =

stmt.executeUpdate(

"create table transtest(col1 int, col2 int,
col3 char(10))");

result =

stmt.executeUpdate(

"create index idx1 on transtest(col1) ");

con.commit();

int n = 0;

PreparedStatement prepStmt = con.prepareStatement(

continued

" insert into transtest values (?, 1, ’XXXXXXX’) ");

for (n = 1; n < 20; n++) {

prepStmt.setInt(1, n);

prepStmt.executeUpdate();

}

con.rollback();

// validate that rollback succeeded.

// There should be no data in the table

Statement stmt1= con.createStatement();

ResultSet rs = stmt1.executeQuery("select * from
transtest");

boolean more = rs.next();

if (more == false)

System.out.println("Data was rolled back ");

}

catch (SQLException ex) {

// Print description of the exception.

System.out.println("** Error on database update.
Rolling back ... ** ");

con.rollback();

ex.printStackTrace ();

}

}

}

CCCC GGGG IIII AAAA pppp pppp llll iiii cccc aaaa tttt iiii oooo nnnn
With the prevalence of the World Wide Web, CGI applications are
commonplace. Though currently these are written primarily in C or
C++, Java presents an attractive alternative to these languages for the

4
J

D
B

C
 T

u
to

ri
a
l

115

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
creation of these applications. The code in this section provides an
example of a simple CGI application written in Java.

The purpose of the this CGI program is to retrieve the records
from the customer’s table where the last name is like the parameter
passed into the CGI program. The CGI application first receives the
command line arguments, the CGI token. This token is parsed and
used as a parameter in a SQL statement to be executed. The results
of the executed statement are formatted as an HTML page and dis-
played to the terminal screen. The following steps are used in this
application:

1. Load driver manager and create connection

2. Create prepared statement with parameter

3. Parse CGI arguments

4. Set parameters and execute query

5. Retrieve results and HTML output

These steps are discussed in more detail in the following sections.

Load Driver Manager and Create Connection

The driver manager is loaded as in the previous examples and the
connection is created with the Microsoft Access database. The code
for this is as follows:

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

String url = "jdbc:odbc:msaccessdb";

Connection con = DriverManager.getConnection (

url, "", "");

Create Prepared Statement
with Parameter

A PreparedStatement object is then created using a SQL select
statement that includes a parameter for the filter statement. This
parameter is used to identify the list of customer table records that will
be displayed in the HTML page. The value for this parameter is sup-
plied by the CGI parameters passed to the program.

116

PreparedStatement stmt = con.prepareStatement(

" select * from customers " +

" where lastname like ? ");

Parse CGI Arguments

The CGI parameters are passed to the program using a “+” to sep-
arate the arguments. These arguments must be parsed and the param-
eter values retrieved from the string passed to the program.

First the command line array is checked to determine whether or
not any arguments have been passed to the program. If no arguments
have been passed, the program will exit.

...

// parse the CGI arguments

if (argv.length == 0) {

System.out.println("Invalid Parameters. Exiting ... ");

System.exit(-1);

}

StringTokenizer Params = new StringTokenizer(

argv[0], delim);

Vector vParams = new Vector();

String s = null;

while (Params.hasMoreTokens()) {

s = Params.nextToken();

vParams.addElement(s);

}

...

Next, a StringTokenizer object is created using the array of
strings passed on the command line and specifying the delimiter string
(previously set to the “+” character) to be used to parse the string. A
Vector object is also created to store the parameters passed on the
command line. A while loop is then executed to retrieve each of the
parameter values passed. As each of these values is retrieved, it is

4
J

D
B

C
 T

u
to

ri
a
l

117

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
added to the Vector used to store the parameter values. (In this
example, only one parameter value is passed.)

Set Parameters and Execute Query

The parameter values then are used as parameters for the query.
This is accomplished by retrieving the parameter value from the
Vector object used to store the values and using this string to set the
first parameter in the PreparedStatement containing the query.

// Arg1 is the last name

stmt.setString(1, vParams.elementAt(0).toString());

ResultSet rs = stmt.executeQuery();

118

Figure 4.1: Output of CGI demonstration application

Retrieve Results and Display Formatted Output

The results of the query are then retrieved in a ResultSet. If no
results have been retrieved, as indicated by the boolean value
returned from the next ResultSet method call, then the program
displays an error message and exits. If program execution continues,
then values have been found and will be displayed using formatting
commands for the HTML pages. These formatting commands display
the page as an HTML table, as shown in Figure 4.1.

ResultSetMetaData rsmd = rs.getMetaData();

boolean more = rs.next();

if (!more) {

System.out.println("Error - no rows retrieved");

System.exit(-1);

}

// HTML page header

System.out.println("");

System.out.println(

"<p> Customer address information is listed in the table below
</p>");

// Table header

System.out.println("<table border > ");

System.out.println("<caption>Customer Addresses </caption> ");

System.out.println("<th> First Name </th>");

System.out.println("<th> Last Name </th>");

System.out.println("<th> Address </th> ");

System.out.println("<th> City </th> ");

System.out.println("<th> State </th> ");

System.out.println("<th> Zip </th> ");

// display the table rows

while (more) {

System.out.println("<tr> ");

for (n = 1; n <= rsmd.getColumnCount(); n++)

System.out.println("<td > " +

rs.getString(n) +

4
J

D
B

C
 T

u
to

ri
a
l

119

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
" </td> ");

System.out.println("</tr>");

more = rs.next();

}

System.out.println("</table> ");

}

A Statement object is used to determine the number of columns in
the retrieved ResultSet. Each column of the retrieved row is placed
in the table, the result being a HTML table with rows of data for each
row returned from the database.

The complete code for this example is displayed in Program 4.7.

Program 4.7 cgiapp.java
import java.sql.*;

import java.util.StringTokenizer;

import java.util.Vector;

import java.io.*;

class cgiApp {

static String delim = "+";

public static void main(String argv[]) {

int n = 0;

try {

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

String url = "jdbc:odbc:msaccessdb";

Connection con = DriverManager.getConnection (

url, "", "");

PreparedStatement stmt = con.prepareStatement(

" select * from customers " +

120

continued

" where lastname like ? ");

// parse the CGI arguments

if (argv.length == 0) {

System.out.println("Invalid Parameters. Exiting ...

");

System.exit(-1);

}

StringTokenizer Params = new StringTokenizer(argv[0],
delim);

Vector vParams = new Vector();

String s = null;

while (Params.hasMoreTokens()) {

s = Params.nextToken();

vParams.addElement(s);

}

// Arg1 is the last name

s = vParams.elementAt(0).toString();

stmt.setString(1, vParams.elementAt(0).toString());

ResultSet rs = stmt.executeQuery();

ResultSetMetaData rsmd = rs.getMetaData();

boolean more = rs.next();

if (!more) {

System.out.println("Error - no rows retrieved");

System.exit(-1);

}

// HTML page header

System.out.println("");

4
J

D
B

C
 T

u
to

ri
a
l

121

continued

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
System.out.println("<p> Customer address information is
listed in the table below </p>");

// Table header

System.out.println("<table border > ");

System.out.println("<caption>Customer Addresses
</caption> ");

System.out.println("<th> First Name </th>");

System.out.println("<th> Last Name </th>");

System.out.println("<th> Address </th> ");

System.out.println("<th> City </th> ");

System.out.println("<th> State </th> ");

System.out.println("<th> Zip </th> ");

while (more) {

System.out.println("<tr> ");

for (n = 1; n <= rsmd.getColumnCount(); n++)

System.out.println("<td > " +

rs.getString(n) +

" </td> ");

System.out.println("</tr>");

more = rs.next();

}

System.out.println("</table> ");

}

catch (java.lang.Exception ex) {

ex.printStackTrace();

}

}

}

Metadata Access

The JDBC interface provides access to a rich supply of information
about the current database or a ResultSet. While many users never
need to access this information, there is most likely some small
subset that will be useful to most users. For instance, the

122

ResultSetMetaData class provides information on the number of
columns retrieved in a ResultSet. It is very likely that generic rou-
tines reading a ResultSet will want to make use of this information
rather than hard-coding the column count each time the routine is
used.

The following example demonstrates the use of metadata methods
for evaluating an unknown query at runtime. This example enables
the user to enter a query and then processes the query, using metada-
ta methods to determine the number and type of columns, and mak-
ing a rudimentary attempt to format the data based on the data type.
This program uses the following steps:

1. Retrieve query from the command line

2. Load driver and create connection

3. Create statement and execute the query

4. Retrieve the ResultSet and determine the number of
columns

5. Execute formatting routine

6. Iterate results displaying formatted data

These steps are explained in more detail in the following sections.

Retrieve Query from the Command Line

The first step is to retrieve the query as a String from the com-
mand line. This is accomplished by setting the queryString string
to the value of the first element of the argument string array (argv). If
this value is null, the program displays an error message and aborts.
This string is then used to execute the query.

// default query is NULL

String queryString = null;

// default data source name

String url = "jdbc:odbc:msaccessdb";

// rst argument is the query to execute

if (argv.length > 0)

queryString = argv[0];

4
J

D
B

C
 T

u
to

ri
a
l

123

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
// if no query, must abort

if (queryString == null) {

System.out.println(

"Must enter a query as a parameter. Aborting. ");

System.exit(-1);

}

Load Driver and Create Connection

As in the previous examples, the DriverManager must be loaded
and the Connection object must be created. The url string is used to
connect to a local Microsoft Access database using the database URL.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection (

url, "", "");

Create Statement and Execute the Query

The Statement object is then created and the query string received
on the command line is executed. The results of the query execution
are returned as a ResultSet. This ResultSet then is used to retrieve
and process the results.

// Create statement

Statement stmt = con.createStatement();

// Execute the query

ResultSet rs = stmt.executeQuery(queryString);

Retrieve the ResultSet and Determine
the Number of Columns

A ResultSetMeta object is created from the ResultSet returned
by the query statement execution. One of the more common uses of a
ResultSetMetaData object is the retrieval of the number of columns
returned by the ResultSet using the getColumnCount method
as shown in the following code.

124

// Determine the nature of the Results

ResultSetMetaData md = rs.getMetaData();

// display the results

int numCols = md.getColumnCount();

Execute Formatting Routine

The ResultSetMetaData object is used to determine the nature of
the data returned by the query. The formatOutputString routine is
used to interpret and format the data. It receives three parameters: the
ResultSetMetaData object, the ResultSet object, and the column
index. The OutputString is the string that is returned by the method,
and the colTypeNameString is the string used to store the data type
name of the column data type:

// Formatting routine

static String formatOutputString(ResultSetMetaData rsmd,

ResultSet rs,

int colIndex) {

String OutputString = null;

String colTypeNameString = null;

try {

int colType = rsmd.getColumnType(colIndex);

colTypeNameString = typeNameString(colType);

if (colTypeNameString.equals("UNKNOWN") ||

colTypeNameString.equals("OTHER"))

colTypeNameString = rsmd.getColumnTypeName(colIndex);

Object obj = formattedValue(rs, rsmd, colIndex,
colType);

if (obj == null)

return (" ** NULL ** ");

OutputString = rsmd.getColumnLabel(colIndex) +

4
J

D
B

C
 T

u
to

ri
a
l

125

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
" Data Type is " +

colTypeNameString +

" ; value is " + obj.toString();

}

The getColumnType method of the ResultSetMetaData class is
called to retrieve the column type of the ResultSet column being
formatted (referenced by the colIndex parameter).

This method then calls the formattedValue method to format the
data in the column based on the column data type. This method
returns an object that is tested for a NULL value. If the object is
NULL, then a string indicating a NULL value is returned. If the
object is not null, a String is created with the column label as
returned by the getColumnLabel method of the ResultMetaData
object, the data type name as stored in the colTypeNameString vari-
able, and the value of the object as returned by the Object class
toString method. This String is returned by the method as shown
in the return clause shown following the catch code block in the fol-
lowing code.

catch (SQLException ex) {

System.out.println ("\n*** SQLException
caught ***\n");

while (ex != null) {

System.out.println ("SQLState: " +

ex.getSQLState ());

System.out.println ("Message: " +

ex.getMessage ());

System.out.println ("Vendor: " +

ex.getErrorCode ());

ex = ex.getNextException ();

System.out.println ("");

}

}

return(OutputString);

}

126

The typeNameString method evaluates the integer data type value
returned by the ResultSetMetaData getColType method and sim-
ply maps the integer value to a character string name. This character
string name then is displayed with the column data to indicate the col-
umn data type.

// return the type name as a string

static String typeNameString(int Type) {

switch (Type) {

case (Types.BIGINT): return ("BIGINT");

case (Types.BINARY): return ("BINARY");

case (Types.BIT): return ("BIT");

case (Types.CHAR): return ("CHAR");

case (Types.INTEGER): return ("INTEGER");

case (Types.DATE): return ("DATE");

case (Types.DECIMAL): return ("DECIMAL");

case (Types.FLOAT): return ("FLOAT");

case (Types.LONGVARBINARY): return ("LONGVARBINARY");

case (Types.LONGVARCHAR): return ("LONGVARCHAR");

case (Types.OTHER): return ("OTHER");

}

return ("UNKNOWN");

}

The formattedValue method demonstrates the process of format-
ting column data based on data type. The method receives a
ResultSet object, a ResultSetMetaData object, a column index,
and a data type for the column. The method returns an Object refer-
ence.

The method evaluates the data type being passed into the method.
Based on the data type, the correct ResultSet “get” method is called
to retrieve the data. The correct data type object is identified as the
return value for each “get” method, but when the object is returned
from the method, it is cast as an Object reference. This allows the
return value to be managed in a generic way in the calling method.

4
J

D
B

C
 T

u
to

ri
a
l

127

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
There is no specific effort to format the data in this example, though

that could easily be managed in the appropriate case clause of the
switch statement shown in the following code. In some cases, the
method does map several data types to a single Java data type, but
there is no effort made to drastically change the format of the specif-
ic data in the columns.

Each case clause in this switch statement returns an Object ref-
erence for the specific data type returned. Should control fall through
the switch statement, a return statement returns the object reference
for the ResultSet column (getObject).

static Object formattedValue(ResultSet rs,

ResultSetMetaData rsmd,

int colIndex,

int Type) {

Object generalObj = null;

try {

switch (Type) {

case (Types.BIGINT):

Long longObj = new Long(rs.getLong(colIndex));

return ((Object) longObj);

case (Types.BIT):

Boolean booleanObj = new Boolean(rs.getBoolean(
colIndex));

return ((Object) booleanObj);

case (Types.CHAR):

String stringObj = new String(rs.getString(colIndex));

return ((Object) stringObj);

case (Types.INTEGER):

Integer integerObj = new Integer(rs.getInt(colIndex)
);

return ((Object) integerObj);

case (Types.DATE):

Date dateObj = rs.getDate(colIndex);

return ((Object) dateObj);

case (Types.DECIMAL):

128

case (Types.FLOAT):

Numeric numericObj = rs.getNumeric(colIndex,
rsmd.getScale(colIndex));

return ((Object) numericObj);

case (Types.BINARY):

case (Types.LONGVARBINARY) :

case (Types.LONGVARCHAR) :

case (Types.OTHER) :

return (rs.getObject(colIndex));

}

// get the object handle

generalObj = rs.getObject(colIndex);

}

Iterate Results Displaying Formatted Data

The ResultSet is iterated first by positioning the pointer before
the first element using the next method, and then moving through the
ResultSet using a while loop. For each row in the ResultSet, the
row count is displayed and an inner loop displays the output of the
formatOutputString method.

// Display data, fetching until end of the result set

boolean more = rs.next();

int rowCount = 0;

while (more) {

rowCount++;

System.out.println("*** row " + rowCount + " *** ");

// Loop through each column, getting the

// column data and displaying

for (n=1; n<=numCols; n++)

// display formatted data

System.out.println(formatOutputString(
md,rs, n));

System.out.println("");

4
J

D
B

C
 T

u
to

ri
a
l

129

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
more = rs.next();

}

}

The complete code for this example is shown in Program 4.8.

Program 4.8 MetaDataExample1.Java
import java.net.URL;

import java.sql.*;

class MetaDataExample1 {

public static void main(String argv[]) {

short n = 0;

try {

// default query is NULL

String queryString = null;

// default data source name

String url = "jdbc:odbc:msaccessdb";

// rst argument is the query to execute

if (argv.length > 0)

queryString = argv[0];

// if no query, must abort

if (queryString == null) {

System.out.println(

"Must enter a query as a parameter.
Aborting. ");

System.exit(-1);

}

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

130

continued

Connection con = DriverManager.getConnection (

url, "", "");

// Create statement

Statement stmt = con.createStatement();

// Execute the query

ResultSet rs = stmt.executeQuery(queryString);

// Determine the nature of the Results

ResultSetMetaData md = rs.getMetaData();

// display the results

int numCols = md.getColumnCount();

System.out.println("");

// Display data, fetching until end of the result set

boolean more = rs.next();

int rowCount = 0;

while (more) {

rowCount++;

System.out.println("*** row " + rowCount + " ***
");

// Loop through each column, getting the

// column data and displaying

for (n=1; n<=numCols; n++)

// display formatted data

System.out.println(
formatOutputString(md,rs, n));

System.out.println("");

more = rs.next();

}

}

4
J

D
B

C
 T

u
to

ri
a
l

131

continued

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
catch (SQLException ex) {

System.out.println (

"\n*** SQLException caught ***\n");

while (ex != null) {

System.out.println ("SQLState: " +

ex.getSQLState ());

System.out.println ("Message: " +

ex.getMessage ());

System.out.println ("Vendor: " +

ex.getErrorCode ());

ex = ex.getNextException ();

System.out.println ("");

}

}

catch (java.lang.Exception ex) {

// Got some other type of exception.
Dump it.

ex.printStackTrace ();

}

}

// Formatting routine

static String formatOutputString(ResultSetMetaData rsmd,

ResultSet rs,

int colIndex) {

String OutputString = null;

String colTypeNameString = null;

try {

int colType = rsmd.getColumnType(colIndex);

132

continued

colTypeNameString = typeNameString(colType);

if (colTypeNameString.equals("UNKNOWN") ||

colTypeNameString.equals("OTHER"))

colTypeNameString = rsmd.getColumnTypeName(
colIndex);

Object obj = formattedValue(rs, rsmd,
colIndex, colType);

if (obj == null)

return (" ** NULL ** ");

OutputString = rsmd.getColumnLabel(colIndex) + " Data
Type is " +

colTypeNameString +

" ; value is " + obj.toString();

}

catch (SQLException ex) {

System.out.println ("\n*** SQLEx-
ception caught ***\n");

while (ex != null) {

System.out.println ("SQLState: " +

ex.getSQLState ());

System.out.println ("Message: " +

ex.getMessage ());

System.out.println ("Vendor: " +

ex.getErrorCode ());

ex = ex.getNextException ();

System.out.println ("");

4
J

D
B

C
 T

u
to

ri
a
l

133

continued

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
}

}

return(OutputString);

}

// return the type name as a string

static String typeNameString(int Type) {

switch (Type) {

case (Types.BIGINT): return ("BIGINT");

case (Types.BINARY): return ("BINARY");

case (Types.BIT): return ("BIT");

case (Types.CHAR): return ("CHAR");

case (Types.INTEGER): return ("INTEGER");

case (Types.DATE): return ("DATE");

case (Types.DECIMAL): return ("DECIMAL");

case (Types.FLOAT) : return ("FLOAT");

case (Types.LONGVARBINARY) : return (
"LONGVARBINARY");

case (Types.LONGVARCHAR) : return (
"LONGVARCHAR");

case (Types.OTHER) : return ("OTHER");

}

return ("UNKNOWN");

}

static Object formattedValue(ResultSet rs,

ResultSetMetaData rsmd,

134

continued

int colIndex,

int Type) {

Object generalObj = null;

try {

switch (Type) {

case (Types.BIGINT):

Long longObj = new Long(rs.getLong(colIndex));

return ((Object) longObj);

case (Types.BIT):

Boolean booleanObj = new Boolean(
rs.getBoolean(colIndex));

return ((Object) booleanObj);

case (Types.CHAR):

String stringObj = new String(rs.getString(colIndex
));

return ((Object) stringObj);

case (Types.INTEGER):

Integer integerObj = new Integer(rs.getInt(
colIndex));

return ((Object) integerObj);

case (Types.DATE):

Date dateObj = rs.getDate(colIndex);

return ((Object) dateObj);

case (Types.DECIMAL):

case (Types.FLOAT):

Numeric numericObj = rs.getNumeric(colIndex,
rsmd.getScale(colIndex));

return ((Object) numericObj);

case (Types.BINARY):

case (Types.LONGVARBINARY) :

case (Types.LONGVARCHAR) :

case (Types.OTHER) :

return (rs.getObject(colIndex));

4
J

D
B

C
 T

u
to

ri
a
l

135

continued

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
}

// get the object handle

generalObj = rs.getObject(colIndex);

}

catch (SQLException ex) {

System.out.println ("\n*** SQLException caught ***\n");

while (ex != null) {

System.out.println ("SQLState: " +

ex.getSQLState ());

System.out.println ("Message: " +

ex.getMessage ());

System.out.println ("Vendor: " +

ex.getErrorCode ());

ex = ex.getNextException ();

System.out.println ("");

}

}

// just return the object referernce

return (generalObj);

}

}

Scrolling ResultSet Array

One of the limitations of the ResultSet is that scroll cursors are
not supported. To overcome this limitation, the Java/JDBC program-
mer can make use of a small set of methods that provide this capabil-
ity. These minor code changes provide the ability to move forward or
backward through the data set, or to move to a specific row.

136

The following steps are taken in this program:

1. Declare RSArray object

2. Load DriverManager and connection

3. Create Statement and execute

4. Iterate ResultSet adding to ResultSetArray buffer

5. Display results

These steps are described in more detail in the following sections.

Declare RSArray Object

An RSArray object is declared to hold the ResultSet elements
returned by the Statement object. This object contains the methods
to store any ResultSet elements. The RSArray class contains a num-
ber of methods that will take any object reference passed (preferably
a ResultSet object, but that is not required). These objects are stored
in a Vector object; one for the ResultSet object pointer and the
other for the columns. (The RSArray class is described later in this
chapter.)

static RSArray rsBuff = new RSArray();

Load DriverManager and Connection

The DriverManager must be loaded and a Connection estab-
lished. This code establishes a Microsoft Access database connection
with a local database using the JDBC-ODBC bridge.

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

String url = "jdbc:odbc:msaccessdb";

Connection con = DriverManager.getConnection (url, "", "");

Create Statement and Execute

Next, the Statement object is created and executed using a query
that retrieves all columns and all rows for the loadtest table.

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(" select * from loadtest");

4
J

D
B

C
 T

u
to

ri
a
l

137

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
Iterate ResultSet Adding
to ResultSetArray Buffer

The ResultSet retrieved by executing the statement is then read in
a serial fashion. Each row retrieved is added to the ResultSetArray
object. At the end of the while loop, the number of records loaded
(which is limited to 50 in this example) is stored in the rowsLoaded
integer variable.

while (more && n++ < 50) {

rsBuff.addElement(rs);

more = rs.next();

}

int rowsLoaded = n;

Display Results

The results are then displayed in a serial fashion by using a
RSArray method that displays a specific Vector element. A for loop
is executed for the number of rows that have been loaded into the
RSArray object. For each iteration of the loop, the BuffelementAt
method returns a Vector data type for the element index value passed
into the method. This Vector is the columns Vector for the row
being displayed. By looping through the number of columns in the
query ResultSet (as returned by the getColumnCount method of
the ResultSetMetaData) all of the columns in the row will be dis-
played.

The Vector, named ColumnsVector, that has been returned by
the RSArray elementAt method is then traversed. For each ele-
ment in the Vector, the elementAt method returns an object, and
the toString method converts the Object to a String for dis-
play.

System.out.println("Processed " + n + " rows");

// traverse the rs buffer vector ResultsBuffer

138

Vector columnsVector = null;

for (x = 0; x < rowsLoaded-1; x++) {

// get the row

columnsVector = (Vector) rsBuff.ElementAt(x+1);

// display the row contents (columns)

for (n = 0; n < rs.getMetaData().getColumnCount(); n++) {

System.out.println("Row " + x + " Column: " + n + " " +

columnsVector.elementAt(n
).toString());

}

}

}

4
J

D
B

C
 T

u
to

ri
a
l

139

Note that because the element is retrieved
as an object, it is possible to determine the
data type of the object by determining the
name of the class. The code to perform this

function would be as follows:

Object obj = columns.elementAt(x);

String s = obj.getClass().getName();

This code retrieves the Object reference for the
specified element and then retrieves the class of the
object and then calls the getName method to retrieve
the name of the class. Using this class name, the data
type of the object can be determined and then used
accordingly.

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
The code for the entire application is presented in Program 4.9.

Program 4.9 RSArray1.java
import java.sql.*;

import java.io.*;

import java.util.Vector;

class rsArray1 {

static RSArray rsBuff = new RSArray();

public static void main(String argv[]) {

try {

Class.forName ("jdbc.odbc.JdbcOdbcDriver");

String url = "jdbc:odbc:msaccessdb";

Connection con = DriverManager.getConnection (
url, "", "");

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(" select *
from loadtest");

int n = 0;

int x = 1;

ResultSetMetaData rsmd = rs.getMetaData();

boolean more = rs.next();

int colCount = rsmd.getColumnCount();

while (more && n++ < 50) {

rsBuff.addElement(rs);

more = rs.next();

}

140

continued

int rowsLoaded = n;

System.out.println("Processed " + n + " rows");

// traverse the rs buffer vector ResultsBuffer

Vector columnsVector = null;

for (x = 0; x < rowsLoaded-1; x++) {

// get the row

columnsVector = (Vector) rsBuff.ElementAt(x+1
);

// display the rows contents (columns)

for (n = 0; n <
rs.getMetaData().getColumnCount(); n++) {

System.out.println("Row " + x + "
Column: " + n + " " +

columnsVector.elementAt(n
).toString());

}

}

}

catch (java.lang.Exception ex) {

// Print description of the exception.

System.out.println("** Error on data select. ** ");

ex.printStackTrace ();

}

}

}

TTTT hhhh eeee RRRR SSSS AAAA rrrr rrrr aaaa yyyy CCCC llll aaaa ssss ssss
The RSArray class as used in the previous example provides a means
of moving forward and backward through the ResultSet. The
RSArray class is composed of the following methods.

4
J

D
B

C
 T

u
to

ri
a
l

141

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
Class Definition

The RSArray class contains two Vector objects as instance vari-
ables. The ResultsBuffer Vector object is used to hold an array of
Vector objects that contain the constituent columns of each of the
rows. Instance variables are used to avoid having to instantiate new
Vector objects each time the methods are called. The class definition
for the RSArray class is as shown in the following code.

class RSArray {

// instance variables

int index = 0;

// a vector of result sets

Vector ResultsBuffer = new Vector();

// a vector of rows (results columns and data values)

Vector columns = new Vector();

A series of methods are used to manipulate the internal Vector
objects. These methods are used to add elements to the RSArray
object, retrieve an element at a specific position in the Object, or to
retrieve the next or previous element in the array. These methods are:

• AddElement

• ElementAt

• next

• previous

These methods are described in more detail in the following sections.

ADDELEMENT

The addElement method takes a single ResultSet as its parame-
ter. Each of the columns in this ResultSet are retrieved as an Object
and added to the columns Vector object used to store the data in the
ResultSet columns. A for loop is used to retrieve each of the
columns in the ResultSet using the getObject method.

The object containing the columns is then cloned using the Object
class method clone. This cloned object is then added to the

142

ResultsBuffer Vector object. The elements in the columns Vector
then is cleared for the next iteration.

Java objects are passed by reference, so passing the original
Object object would lead to problems. Cloning the object
makes a new copy thus effectively passing the object by value.

addElement(

void addElement(ResultSet rs) {

int x;

try {

// store the columns in a Vector

for (x = 1;

x <= rs.getMetaData().getColumnCount();

x++)

columns.addElement((Object) rs.getObject(x));

// store the columns Vector in the Results Vector

ResultsBuffer.addElement((Object) columns.clone());

columns.removeAllElements();

}

catch (java.lang.Exception ex) {

ex.printStackTrace();

}

}

// -------------------------------

ELEMENTAT METHOD

The ElementAt method is used to retrieve the Vector element at
the index position passed into the method as a parameter. It returns
the element at the index position as an Object by calling the

4
J

D
B

C
 T

u
to

ri
a
l

143

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e
elementAt method of the ResultBuffer. The result of the operation
is returned as an Object reference.

Object ElementAt(int targetIndex) {

Vector returnVector = null;

try {

returnVector = (Vector) ResultsBuffer.elementAt(targetIndex-1);

}

catch (java.lang.Exception ex) {

ex.printStackTrace();

}

return ((Object) returnVector);

}

NEXT

The next method retrieves the next sequential element in the
RSArray. It increments the internal index element and then attempts
to retrieve the element at that position.

Object next() {

index++;

return (ElementAt(index));

}

PREVIOUS

The previous method retrieves the previous method in the array.
It first decrements the internal index and then attempts to retrieve the
previous element in the RSArray.

The complete code for this program is presented in Program 4.10.

144

Program 4.10 RSArrayGen.java
import java.sql.*;

import java.io.*;

import java.util.Vector;

class RSArray {

// instance variables

int index = 0;

// a vector of result sets

Vector ResultsBuffer = new Vector();

// a vector of rows (results columns and data values)

Vector columns = new Vector();

void addElement(ResultSet rs) {

int x;

try {

// store the columns in a Vector

for (x = 1;

x <= rs.getMetaData().getColumnCount();

x++)

columns.addElement((Object) rs.getObject(x));

// store the columns Vector in the Results
Vector

ResultsBuffer.addElement((Object)
columns.clone());

columns.removeAllElements();

}

catch (java.lang.Exception ex) {

ex.printStackTrace();

4
J

D
B

C
 T

u
to

ri
a
l

145

continued

J
D

B
C

 D
e
v
e
lo

p
e
r’

s
 R

e
s
o

u
rc

e

146 }

}

// —————————------------------——————————-

Object ElementAt(int targetIndex) {

Vector returnVector = null;

try {

returnVector = (Vector) ResultsBuffer.elementAt(

targetIndex-1);

}

catch (java.lang.Exception ex) {

ex.printStackTrace();

}

return ((Object) returnVector);

}

Object next() {

index++;

return (ElementAt(index));

}

Object previous() {

index ;

return (elementAt(index));

}

}

This chapter has presented tutorials that demonstrated both the
basics of JDBC and more advanced topics. The first example covered
basic database access with JDBC and demonstrated the process of
creating a connection to a database and retrieving data.

The process of retrieving and processing data with the JDBC
ResultSet, a requirement for almost all JDBC applications, was
demonstrated in several code examples. The important topics covered
in the chapter are as follows:

• Database metadata reveals information about the nature of the
database connection.

• ResultSet metadata reveals information about the nature of the
results returned from the database.

• Using the PreparedStatement class to prepare a SQL statement
provides performance gains and can simplify coding.

• To overcome the JDBC limitation of unidirectional cursors, results
can be stored in a Vector object; this Vector object can then be
used to access data randomly.

One of the primary uses of Java is to create applets. The following
chapter provides an uncomplicated version of JDBC usage in an
applet. This applet displays an applet window, retrieves data into a
ResultSet vector, and then allows the user to browse the data mov-
ing both forward and backward through the data.

4
J

D
B

C
 T

u
to

ri
a
l

147SSuummmmaarryy

CCoommiinngg UUpp

