
Advertisement: Support JavaWorld, click here!

July 2000

FUELING INNOVATION

Search

Topical index
Net News Central
Developer Tools Guide
Book Catalog
Writers Guidelines
Privacy Policy
Copyright

Object Persistence

Flatten your objects
Discover the secrets of the Java Serialization API

Summary
The Java Serialization API is used by many other Java APIs (like RMI and JavaBeans) to
persist objects beyond the duration of a running virtual machine. You can also use the Java
Serialization API manually for your own persistence strategies. Though the basics of Java
Serialization are quite simple, some of the more intricate portions of the API can often seem a
mystery. In this article, Todd Greanier will demystify the secrets of the Java Serialization API.
(2,700 words)

By Todd M. Greanier

e all know Java allows us to create reusable objects in memory. However, all of those objects exist
only as long as the virtual machine remains running. It would be nice if the objects we create could

exist beyond the lifetime of the virtual machine, wouldn't it? Well, with object serialization, you can flatten
your objects and reuse them in powerful ways.

Object serialization is the process of saving an object's state to a sequence of bytes, as well as the process
of rebuilding those bytes into a live object at some future time. The Java Serialization API provides a
standard mechanism for Java developers to handle object serialization. The API is small and easy to use,
provided the classes and methods are understood.

Throughout this article, we'll examine how to persist your Java objects, starting with the basics and
proceeding to the more advanced concepts. We'll learn three different ways to perform serialization --
using the default protocol, customizing the default protocol, and creating our own protocol -- and we'll
investigate concerns that arise with any persistence scheme such as object caching, version control, and
performance issues.

By the conclusion of this article, you should have a solid comprehension of that powerful yet sometimes
poorly understood Java API.

1 of 9 25/07/2000 14:43

Flatten your objects - JavaWorld July 2000 http://www.javaworld.com/javaworld/jw-07-2000/jw-0714-flatten_p.html

First things first: The default mechanism
Let's start with the basics. To persist an object in Java, we must have a persistent object. An object is
marked serializable by implementing the java.io.Serializable interface, which signifies to the
underlying API that the object can be flattened into bytes and subsequently inflated in the future.

Let's look at a persistent class we'll use to demonstrate the serialization mechanism:

10 import java.io.Serializable;
20 import java.util.Date;
30 import java.util.Calendar;
40 public class PersistentTime implements Serializable
50 {
60 private Date time;
70
80 public PersistentTime()
90 {
100 time = Calendar.getInstance().getTime();
110 }
120
130 public Date getTime()
140 {
150 return time;
160 }
170 }

As you can see, the only thing we had to do differently from creating a normal class is implement the
java.io.Serializable interface on line 40. The completely empty Serializable is only a marker
interface -- it simply allows the serialization mechanism to verify that the class is able to be persisted. Thus,
we turn to the first rule of serialization:

Rule #1: The object to be persisted must implement the Serializable interface or inherit that
implementation from its object hierarchy.

The next step is to actually persist the object. That is done with the java.io.ObjectOutputStream class.
That class is a filter stream -- it is wrapped around a lower-level byte stream (called a node stream) to
handle the serialization protocol for us. Node streams can be used to write to file systems or even across
sockets. That means we could easily transfer a flattened object across a network wire and have it be rebuilt
on the other side!

Take a look at the code used to save the PersistentTime object:

10 import java.io.ObjectOutputStream;
20 import java.io.FileOutputStream;
30 import java.io.IOException;
40 public class FlattenTime
50 {
60 public static void main(String [] args)
70 {
80 String filename = "time.ser";
90 if(args.length > 0)
100 {
110 filename = args[0];
120 }
130 PersistentTime time = new PersistentTime();
140 FileOutputStream fos = null;
150 ObjectOutputStream out = null;
160 try

2 of 9 25/07/2000 14:43

Flatten your objects - JavaWorld July 2000 http://www.javaworld.com/javaworld/jw-07-2000/jw-0714-flatten_p.html

170 {
180 fos = new FileOutputStream(filename);
190 out = new ObjectOutputStream(fos);
200 out.writeObject(time);
210 out.close();
220 }
230 catch(IOException ex)
240 {
250 ex.printStackTrace();
260 }
270 }
280 }

The real work happens on line 200 when we call the ObjectOutputStream.writeObject() method,
which kicks off the serialization mechanism and the object is flattened (in that case to a file).

To restore the file, we can employ the following code:

10 import java.io.ObjectInputStream;
20 import java.io.FileInputStream;
30 import java.io.IOException;
40 import java.util.Calendar;
50 public class InflateTime
60 {
70 public static void main(String [] args)
80 {
90 String filename = "time.ser";
100 if(args.length > 0)
110 {
120 filename = args[0];
130 }
140 PersistentTime time = null;
150 FileInputStream fis = null;
160 ObjectInputStream in = null;
170 try
180 {
190 fis = new FileInputStream(filename);
200 in = new ObjectInputStream(fis);
210 time = (PersistentTime)in.readObject();
220 in.close();
230 }
240 catch(IOException ex)
250 {
260 ex.printStackTrace();
270 }
280 catch(ClassNotFoundException ex)
290 {
300 ex.printStackTrace();
310 }
320 // print out restored time
330 System.out.println("Flattened time: " + time.getTime());
340 System.out.println();
350 // print out the current time
360 System.out.println("Current time: " + Calendar.getInstance().getTime());
370 }
380}

In the code above, the object's restoration occurs on line 210 with the
ObjectInputStream.readObject() method call. The method call reads in the raw bytes that we
previously persisted and creates a live object that is an exact replica of the original. Because
readObject() can read any serializable object, a cast to the correct type is required. With that in mind,
the class file must be accessible from the system in which the restoration occurs. In other words, the

3 of 9 25/07/2000 14:43

Flatten your objects - JavaWorld July 2000 http://www.javaworld.com/javaworld/jw-07-2000/jw-0714-flatten_p.html

object's class file and methods are not saved; only the object's state is saved.

Later, on line 360, we simply call the getTime() method to retrieve the time that the original object
flattened. The flatten time is compared to the current time to demonstrate that the mechanism indeed
worked as expected.

Nonserializable objects
The basic mechanism of Java serialization is simple to use, but there are some more things to know. As
mentioned before, only objects marked Serializable can be persisted. The java.lang.Object class
does not implement that interface. Therefore, not all the objects in Java can be persisted automatically. The
good news is that most of them -- like AWT and Swing GUI components, strings, and arrays -- are
serializable.

On the other hand, certain system-level classes such as Thread, OutputStream and its subclasses, and
Socket are not serializable. Indeed, it would not make any sense if they were. For example, thread running
in my JVM would be using my system's memory. Persisting it and trying to run it in your JVM would make
no sense at all. Another important point about java.lang.Object not implementing the Serializable
interface is that any class you create that extends only Object (and no other serializable classes) is not
serializable unless you implement the interface yourself (as done with the previous example).

That situation presents a problem: what if we have a class that contains an instance of Thread? In that
case, can we ever persist objects of that type? The answer is yes, as long as we tell the serialization
mechanism our intentions by marking our class's Thread object as transient.

Let's assume we want to create a class that performs an animation. I will not actually provide the animation
code here, but here is the class we'll use:

10 import java.io.Serializable;
20 public class PersistentAnimation implements Serializable, Runnable
30 {
40 transient private Thread animator;
50 private int animationSpeed;
60 public PersistentAnimation(int animationSpeed)
70 {
80 this.animationSpeed = animationSpeed;
90 animator = new Thread(this);
100 animator.start();
110 }
120 public void run()
130 {
140 while(true)
150 {
160 // do animation here
170 }
180 }
190 }

When we create an instance of the PersistentAnimation class, the thread animator will be created and
started as we expect. We've marked the thread on line 40 transient to tell the serialization mechanism
that the field should not be saved along with the rest of that object's state (in that case, the field speed).
The bottom line: you must mark transient any field that either cannot be serialized or any field you do
not want serialized. Serialization does not care about access modifiers such as private -- all nontransient
fields are considered part of an object's persistent state and are eligible for persistence.

Therefore, we have another rule to add. Here are both rules concerning persistent objects:

4 of 9 25/07/2000 14:43

Flatten your objects - JavaWorld July 2000 http://www.javaworld.com/javaworld/jw-07-2000/jw-0714-flatten_p.html

Rule #1: The object to be persisted must implement the Serializable interface or inherit that
implementation from its object hierarchy

Rule #2: The object to be persisted must mark all nonserializable fields transient

Customize the default protocol
Let's move on to the second way to perform serialization: customize the default protocol. Though the
animation code above demonstrates how a thread could be included as part of an object while still making
that object be serializable, there is a major problem with it if we recall how Java creates objects. To wit,
when we create an object with the new keyword, the object's constructor is called only when a new
instance of a class is created. Keeping that basic fact in mind, let's revisit our animation code. First, we
instantiate an object of type PersistentAnimation, which begins the animation thread sequence. Next,
we serialize the object with that code:

PersistentAnimation animation = new PersistentAnimation(10);
FileOutputStream fos = ...
ObjectOutputStream out = new ObjectOutputStream(fos);
out.writeObject(animation);

All seems fine until we read the object back in with a call to the readObject() method. Remember, a
constructor is called only when a new instance is created. We are not creating a new instance here, we are
restoring a persisted object. The end result is the animation object will work only once, when it is first
instantiated. Kind of makes it useless to persist it, huh?

Well, there is good news. We can make our object work the way we want it to; we can make the animation
restart upon restoration of the object. To accomplish that, we could, for example, create a
startAnimation() helper method that does what the constructor currently does. We could then call that
method from the constructor, after which we read the object back in. Not bad, but it introduces more
complexity. Now, anyone who wants to use that animation object will have to know that method has to be
called following the normal deserialization process. That does not make for a seamless mechanism,
something the Java Serialization API promises developers.

There is, however, a strange yet crafty solution. By using a built-in feature of the serialization mechanism,
developers can enhance the normal process by providing two methods inside their class files. Those
methods are:

private void writeObject(ObjectOutputStream out) throws IOException;

private void readObject(ObjectInputStream in) throws IOException,

ClassNotFoundException;

Notice that both methods are (and must be) declared private, proving that neither method is inherited
and overridden or overloaded. The trick here is that the virtual machine will automatically check to see if
either method is declared during the corresponding method call. The virtual machine can call private
methods of your class whenever it wants but no other objects can. Thus, the integrity of the class is
maintained and the serialization protocol can continue to work as normal. The serialization protocol is
always used the same way, by calling either ObjectOutputStream.writeObject() or
ObjectInputStream.readObject(). So, even though those specialized private methods are provided,
the object serialization works the same way as far as any calling object is concerned.

5 of 9 25/07/2000 14:43

Flatten your objects - JavaWorld July 2000 http://www.javaworld.com/javaworld/jw-07-2000/jw-0714-flatten_p.html

Considering all that, let's look at a revised version of PersistentAnimation that includes those private
methods to allow us to have control over the deserialization process, giving us a pseudo-constructor:

10 import java.io.Serializable;
20 public class PersistentAnimation implements Serializable, Runnable
30 {
40 transient private Thread animator;
50 private int animationSpeed;
60 public PersistentAnimation(int animationSpeed)
70 {
80 this.animationSpeed = animationSpeed;
90 startAnimation();
100 }
110 public void run()
120 {
130 while(true)
140 {
150 // do animation here
160 }
170 }
180 private void writeObject(ObjectOutputStream out) throws IOException
190 {
200 out.defaultWriteObject();
220 }
230 private void readObject(ObjectInputStream in) throws IOException,
ClassNotFoundException
240 {
250 // our "pseudo-constructor"
260 in.defaultReadObject();
270 // now we are a "live" object again, so let's run rebuild and start
280 startAnimation();
290
300 }
310 private void startAnimation()
320 {
330 animator = new Thread(this);
340 animator.start();
350 }
360 }

Notice the first line of each of the new private methods. Those calls do what they sound like -- they
perform the default writing and reading of the flattened object, which is important because we are not
replacing the normal process, we are only adding to it. Those methods work because the call to
ObjectOutputStream.writeObject() kicks off the serialization protocol. First, the object is checked to
ensure it implements Serializable and then it is checked to see whether either of those private methods
are provided. If they are provided, the stream class is passed as the parameter, giving the code control over
its usage.

Those private methods can be used for any customization you need to make to the serialization process.
Encryption could be added to the output and decryption to the input (note that the bytes are written and
read in cleartext with no obfuscation at all). They could be used to add extra data to the stream, perhaps a
company versioning code. The possibilities are truly limitless.

Stop that serialization!
OK, we have seen quite a bit about the serialization process, now let's see some more. What if you create a
class whose superclass is serializable but you do not want that new class to be serializable? You cannot
unimplement an interface, so if your superclass does implement Serializable, your new class implements
it, too (assuming both rules listed above are met). To stop the automatic serialization, you can once again

6 of 9 25/07/2000 14:43

Flatten your objects - JavaWorld July 2000 http://www.javaworld.com/javaworld/jw-07-2000/jw-0714-flatten_p.html

use the private methods to just throw the NotSerializableException. Here is how that would be done:

10 private void writeObject(ObjectOutputStream out) throws IOException
20 {
30 throw new NotSerializableException("Not today!");
40 }
50 private void readObject(ObjectInputStream in) throws IOException
60 {
70 throw new NotSerializableException("Not today!");
80 }

Any attempt to write or read that object will now always result in the exception being thrown. Remember,
since those methods are declared private, nobody could modify your code without the source code
available to them -- no overriding of those methods would be allowed by Java.

Create your own protocol: the Externalizable interface
Our discussion would be incomplete not to mention the third option for serialization: create your own
protocol with the Externalizable interface. Instead of implementing the Serializable interface, you
can implement Externalizable, which contains two methods:

public void writeExternal(ObjectOutput out) throws IOException;

public void readExternal(ObjectInput in) throws IOException,

ClassNotFoundException;

Just override those methods to provide your own protocol. Unlike the previous two serialization
variations, nothing is provided for free here, though. That is, the protocol is entirely in your hands.
Although it's the more difficult scenario, it's also the most controllable. An example situation for that
alternate type of serialization: read and write PDF files with a Java application. If you know how to write
and read PDF (the sequence of bytes required), you could provide the PDF-specific protocol in the
writeExternal and readExternal methods.

Just as before, though, there is no difference in how a class that implements Externalizable is used. Just
call writeObject() or readObject and, voila, those externalizable methods will be called automatically.

Gotchas
There are a few things about the serialization protocol that can seem very strange to developers who are
not aware. Of course, that is the purpose of the article -- to get you aware! So let's discuss a few of those
gotchas and see if we can understand why they exist and how to handle them.

Caching objects in the stream
First, consider the situation in which an object is written to a stream and then written again later. By
default, an ObjectOutputStream will maintain a reference to an object written to it. That means that if the
state of the written object is written and then written again, the new state will not be saved! Here is a code
snippet that shows that problem in action:

10 ObjectOutputStream out = new ObjectOutputStream(...);
20 MyObject obj = new MyObject(); // must be Serializable
30 obj.setState(100);
40 out.writeObject(obj); // saves object with state = 100
50 obj.setState(200);
60 out.writeObject(obj); // does not save new object state

7 of 9 25/07/2000 14:43

Flatten your objects - JavaWorld July 2000 http://www.javaworld.com/javaworld/jw-07-2000/jw-0714-flatten_p.html

There are two ways to control that situation. First, you could make sure to always close the stream after a
write call, ensuring the new object is written out each time. Second, you could call the
ObjectOutputStream.reset() method, which would tell the stream to release the cache of references it
is holding so all new write calls will actually be written. Be careful, though -- the reset flushes the entire
object cache, so all objects that have been written could be rewritten.

Version control
With our second gotcha, imagine you create a class, instantiate it, and write it out to an object stream.
That flattened object sits in the file system for some time. Meanwhile, you update the class file, perhaps
adding a new field. What happens when you try to read in the flattened object?

Well, the bad news is that an exception will be thrown -- specifically, the
java.io.InvalidClassException -- because all persistent-capable classes are automatically given a
unique identifier. If the identifier of the class does not equal the identifier of the flattened object, the
exception will be thrown. However, if you really think about it, why should it be thrown just because I
added a field? Couldn't the field just be set to its default value and then written out next time?

Yes, but it takes a little code manipulation. The identifier that is part of all classes is maintained in a field
called serialVersionUID. If you wish to control versioning, you simply have to provide the
serialVersionUID field manually and ensure it is always the same, no matter what changes you make to
the classfile. You can use a utility that comes with the JDK distribution called serialver to see what that
code would be by default (it is just the hash code of the object by default).

Here is an example of using serialver with a class called Baz:

> serialver Baz
> Baz: static final long serialVersionUID = 10275539472837495L;

Simply copy the returned line with the version ID and paste it into your code. (On a Windows box, you
can run that utility with the - show option to simplify the copy and paste procedure.) Now, if you make
any changes to the Baz class file, just ensure that same version ID is specified and all will be well.

The version control works great as long as the changes are compatible. Compatible changes include adding
or removing a method or a field. Incompatible changes include changing an object's hierarchy or removing
the implementation of the Serializable interface. A complete list of compatible and incompatible
changes is given in the Java Serialization Specification (see Resources).

Performance considerations
Our third gotcha: the default mechanism, although simple to use, is not the best performer. I wrote out a
Date object to a file 1,000 times, repeating that procedure 100 times. The average time to write out the
Date object was 115 milliseconds. I then manually wrote out the Date object, using standard I/O the same
number of iterations; the average time was 52 milliseconds. Almost half the time! There is often a trade-off
between convenience and performance, and serialization proves no different. If speed is the primary
consideration for your application, you may want to consider building a custom protocol.

Another consideration concerns the aforementioned fact that object references are cached in the output
stream. Due to that, the system may not garbage collect the objects written to a stream if the stream is not
closed. The best move, as always with I/O, is to close the streams as soon as possible, following the write
operations.

Conclusion

8 of 9 25/07/2000 14:43

Flatten your objects - JavaWorld July 2000 http://www.javaworld.com/javaworld/jw-07-2000/jw-0714-flatten_p.html

Serialization in Java is simple to instigate and almost as simple to implement. Understanding the three
different ways of implementing serialization should aid in bending the API to your will. We have seen a lot
of the serialization mechanism in that article, and I hope it made things clearer and not worse. The bottom
line, as with all coding, is to maintain common sense within the bounds of API familiarity. That article has
laid out a strong basis of understanding the Java Serialization API, but I recommend perusing the
specification to discover more fine-grained details.

About the author
Todd Greanier, director of technology for ComTech Training, has been teaching and developing Java
since it was introduced publicly. An expert in distributed Java technologies, he teaches classes in a wide
range of topics, including JDBC, RMI, CORBA, UML, Swing, servlets/JSP, security, JavaBeans,
Enterprise Java Beans, and multithreading. He also creates custom seminars for corporations, slanted to
their specific needs. Todd lives in upstate New York with his wife, Stacey, and his cat, Bean.

Home | Mail this Story | Resources and Related Links

Advertisement: Support JavaWorld, click here!

(c) Copyright 2000 ITworld.com, Inc., an IDG Communications company

Resources

Read the Java Object Serialization Specification to discover even deeper secrets of the protocol:
http://java.sun.com/products/jdk/1.2/docs/guide/serialization/spec/serialTOC.doc.html
Java I/O, Elliotte Rusty Harold (O'Reilly & Associates, 1999) offers excellent Java Serialization
Specification API coverage as well:
http://www.amazon.com/exec/obidos/ASIN/1565924851/qid%3D962052367/104-9228407-2216730

Feedback: jweditors@javaworld.com
Technical difficulties: webmaster@javaworld.com
URL: http://www.javaworld.com/jw-07-2000/jw-0714-flatten.html
Last modified: Friday, July 14, 2000

9 of 9 25/07/2000 14:43

Flatten your objects - JavaWorld July 2000 http://www.javaworld.com/javaworld/jw-07-2000/jw-0714-flatten_p.html

