
Object Location

Every CORBA system must, somehow, answer the same
question: how do client components obtain object references? There are many possible ways to
answer this question, and each approach has its own set of strengths and weaknesses. Solutions can
be simple to use but less flexible and scalable, or more powerful but more complex. Likewise, solu-
tions can be proprietary to a specific ORB implementation or CORBA-compliant. The ideal
approach would allow a client to easily obtain a reference to an arbitrary object on an arbitrary host,
be CORBA-compliant, and be flexible enough to scale up to large CORBA systems. 

In this chapter, we first introduce a model of how clients obtain references to objects in
servers. Then, we discuss the CORBA-compliant approaches to obtaining object references, as well
as touching on some ORB-specific mechanisms. Each of these mechanisms has its own set of
strengths and weaknesses, and is best applied in different situations. 

A Model for Locating Objects
There are three steps involved in making objects available to clients, as shown in Figure 6.1. This abstract
model sets the stage for our discussion on the practical mechanisms that can be used to locate objects.

C H A P T E R 6

67

Figure 6.1 Exporting and locating objects

Object Directory

Client Server

[1] publish[2] lookup

[3] use



This model is made up of several pieces. Serverand client are our familiar application com-
ponents, which implement and use our business objects, respectively. The third component is the
object directory. This piece is responsible for storing object references, along with some descriptive
data that can optionally be associated with the reference. For example, the CORBA naming service
is an object directory which stores object references, associating them with a name. Likewise, the
CORBA trading object service is an object directory which stores object references, associating
them with a set of properties. Even something as simple as an object reference string stored in a con-
figuration file follows this model. 

To locate objects, our systems perform the following steps. First, the server publishes a num-
ber of objects to the directory, providing some attributes that identify the object in a meaningful way.
Next, clients look up objects in the directory. Clients provide a set of desired attributes to the direc-
tory so that it can return a set of matching objects. Once a client has obtained one or more objects
from the directory, it can begin using them.

The details of how a server publishes objects, and how clients look up objects is, of course,
specific to a particular object directory. Likewise, the number and type of the attributes associated
with an object is specific to each concrete object directory implementation. 

What is an Object Reference?

What exactly is it that these directories are storing? Our servers are not actually publishing
objects to the directory, rather they are publishing object references. A reference contains the IDL
type of the object, as well as enough information for an ORB to be able to find the target object in
its server process on its host. When a client obtains an object reference from the directory, the ORB
turns this into a local programming language object—a proxy—which the client application code
uses to make invocations on the remote target object. 

CORBA Object Location Services
The CORBA specification introduces several instances of object directories. The CORBA naming
service and the CORBA trading object service are the most commonly used, and provide different
levels of flexibility and complexity for object publication and lookup. 

The CORBA naming service stores a name with each object reference. The naming service
also provides for a hierarchical naming space structure, which allows us to logically organize our
objects in whatever way makes sense for our business domain. 

With the CORBA trading object service, each object (known as an offer in trader terminol-
ogy) can have multiple properties of any type. The trading service provides a flexible mechanism
for clients to look up objects based on any subset of these properties.

Both of these services provide us with the ability to associate some additional information
with our published object references. The ability to attach application-specific information to an
object reference is the primary value of these services. It is a layer of abstraction which allows us to
locate objects based on information that is important to us, rather than information that is important
to the ORB.

68 Chapter 6 • Object Location



The CORBA Naming Service

The CORBA naming service is a simple example of an object directory. It stores objects ref-
erences in a hierarchical structure much like a Unix-style file system, so many of the concepts are
familiar to us. Each object reference has a nameassociated with it. A name consists of two string
fields,id and kind. Conceptually, these correspond to a file-system filename and extension. The hier-
archy is made up of naming contexts, which can contain object references as well as other naming
contexts. In this sense, they correspond to directories in a file system. A naming context can store
multiple object references, which must be differentiated by either the id or kind fields of the name
structure. A simple naming service hierarchy is shown in Figure 6.2.

Our root naming context object contains two elements, both of which are naming contexts.
Each of these elements has a name associated with it; one is “StockWatch,” and the other is “Portfo-
lioManager.” (In this example, we only use the id part of the name, and don’t use the kind field).
The “StockWatch” naming context contains two elements, “NASDAQ” and “NYSE,” both of which
are application object references that our server has published. 

Notice that the naming contexts shown in Figure 6.2 have the T-bar notation, which indicates
that they are CORBA objects. This is, in fact, how our application components use the naming ser-
vice—they make invocations on naming context objects. Naming contexts support a number of
operations, only two of which are important for this discussion. Pictorially, this is shown in Figure
6.3. The IDL for these methods is shown below. (For a full introduction to the naming service IDL,
see the CORBA specification, or your naming service programmer’s guide).

CORBA Object Location Services 69

Figure 6.2 Sample Naming Service Hierarchy

"PortfolioManager""StockWatch"

"NASDAQ" "NYSE" "MainAdmin"

:Naming
Context

:Naming
Context

:StockWatch
:Portfolio
Manager

Admin

:Naming
Context

:StockWatch



// IDL Fragment : CORBA Naming Service 
// Simplified IDL : exceptions and typedefs omitted
interface NamingContext
{

void bind(in Name n, in Object obj);

Object resolve (in Name n);

// other methods not shown...
}

As required by our model, naming contexts support operations that allow our servers to
publish objects, and allow our clients to look up objects. These two methods are discussed next.

Servers: Bind Objects
Our servers use the bind() method to publish an object. The server invokes this method on

a naming context object, and supplies the Namestructure associated with the object, as well as the
object itself. Note that we are actually associating two pieces of identifying information with each
object that we export. First is the name itself, made up of the id and kind fields as mentioned previ-
ously. The second piece of information is the object’s place in the naming service hierarchy. It is
these two pieces of information that we can use to control how our name space is structured. This
will be covered shortly, in “Designing a Name Hierarchy.”

Notice that our application object is passed to the bind() method as an Object . This
generic type permits the naming service to be used to store any application object. (Recall that
Object is an implicit base class for all CORBA objects defined in IDL.)

Clients: Resolve Objects
Clients look up objects by invoking the resolve() method on a particular naming context

object. The client provides the naming service with enough information to uniquely identify an
object. The desired name is passed in as an input parameter, while the naming context on which this

70 Chapter 6 • Object Location

Figure 6.3 Naming Service Class Diagram

Name

0..n

Server

Client

bind

reso
lve

bind()
resolve()

NamingContext



method is invoked determines the place in the hierarchy from which the service will perform the
lookup. If a matching object is found, it is returned as a generic Object . The client application sim-
ply narrows this to the appropriate application object, then uses it.

Designing a Name Hierarchy
In making use of the naming service, the first thing to focus on is the structure of the hierar-

chy itself. We can make it as deep or wide as necessary, depending on our business requirements.
We can also choose how to use the id and kind fields of our entries in the naming service. Apply-
ing these two aspects lets us arrange our hierarchy in any number of ways. Generally, we will use
the hierarchical structure to separate logically distinct objects, while related objects will be grouped
together and distinguished by their unique names.

Let’s briefly explore an example. Imagine that each StockWatch server application imple-
ments two interfaces. One is our familiar StockWatch interface, which implements our business
logic. The other is ServerManager , which is a management and instrumentation interface. This is
used by a system administration application to observe and control the server processes as they are
running. 

One possible structure for our name hierarchy is shown in Figure 6.4. In order to simplify our
name hierarchy diagrams, we will avoid using the formal notation. Instead, we’ll use the simpler
format shown below. Each context and object is simply denoted by its name, in an id.kind string
format. The leaf nodes of the hierarchy are the object references.

Here, we have chosen to have a flat hierarchy, with two object references with id NASDAQ
in the StockWatch naming context. These references are differentiated by their kind field. Likewise,
there are two NYSE references in the naming context, one reference for each of the interfaces sup-
ported by our server process.

Alternatively, we could have chosen not to use the kind field at all. In this case, we would
have a deeper name hierarchy, with a naming context for each of the stock exchanges. Each of these
contexts would contain the two exported objects. This is shown in Figure 6.5.

CORBA Object Location Services 71

Figure 6.4 Flat Name Hierarchy

"StockWatch"

"NASDAQ.StockWatch"

"NASDAQ.ServerManager"

"NYSE.StockWatch"

"NYSE.ServerManager"



When designing a name hierarchy, there are a number of factors to be considered. First, con-
sider the complexity of your applications, and the domain that this name hierarchy will cover. Obvi-
ously, a hierarchy for a single departmental application can be much simpler than one for a
collection of applications spanning the enterprise. Also think about the intended usage of the hierar-
chy. Is the structure of the hierarchy going to be exposed to end users through an application? Or,
will the hierarchy only be accessed by the application program and administrators? This factor will
often determine whether a hierarchy is made up of many contexts with descriptive names, or fewer
contexts with names in a standard format. 

For instance, two potential hierarchies are shown in Figures 6.6 and 6.7. The first is well-
suited for browsing by end users. We could easily imagine an application that browses the hierarchy
and lets users choose the printer they wish to use. Compare this to the second hierarchy, which is
much more compact. This structure is better used for applications that hide the structure from end
users. The application may be configured once by an administrator to use a particular printer, so that
these names are not visible to end users. The structure in Figure 6.7 is simpler, so that it can be used
by simpler administration and application code.

Another factor to consider is the number of objects published by server applications. In gen-
eral, there are two types of objects that we can choose to export. First, we could export the actual
business objects that our applications use. The printer objects shown in Figure 6.6 are examples of
this. Second, we could choose not to publish our business objects, but to instead publish factory
objects. These factories acts as entry points into our components. They support methods that appli-
cations use to obtain the business objects. The PortfolioManager object is a good example of
an entry point. Our client applications will look up a PortfolioManager object, and use this to
obtain a Portfolio object, which implements our business functions. Later, in Chapter 18, “Con-
sequences For The Engineering Process,” we discuss CORBA components, and entry points into
their services. 

72 Chapter 6 • Object Location

Figure 6.5 Deep name hierarchy

"StockWatch"

"NASDAQ"

"ServerManager"

"NYSE"

"ServerManager"

"StockWatch" "StockWatch"



One additional factor to be considered is the quality of service required by a naming structure.
This is especially important if you intend to use the structure to store large numbers of objects, or
very complex hierarchies. Once you have designed your hierarchy, evaluate the capabilities of your
naming service. Consider the persistent storage mechanisms supported—does it use a file-based
system, or is it connected to an industrial-strength database? Evaluate its performance with the
intended numbers of contexts and objects. Does it meet your performance requirements? Consider
its robustness—does it support replication of its data store, for instance? Make sure that the product
you choose meets your needs.

When designing a name hierarchy, also consider the naming service’s ability to federate (that
is, link) name hierarchies together. Recall that naming contexts are simply objects, implemented in
a particular CORBA server. When you insert a naming context into a hierarchy, you actually supply

CORBA Object Location Services 73

Figure 6.6 Descriptive naming hierarchy

"Boston Printers"

"Sales Printer"

"Sales Color Printer"

"Finance Printer"

"First Floor" "Second Floor"

Figure 6.7 Compact naming hierarchy

"boston.printers"

"P03.HP5" "P04.EPSIJ" "P11.HP5"



a reference to the new naming context. Typically, this new context is implemented in the same server
as the containing context. However, because these are simply CORBA object references, the nam-
ing context can in fact be implemented in another naming service process. An example of federa-
tion is shown in Figure 6.8.

This example shows our Boston naming hierarchy linked to another hierarchy in our Seattle
office. These hierarchies are stored by two separate naming service implementations, running on
separate hosts. By federating them, we can provide transparent access to multiple hierarchies. In this
example, our Boston-based end users can easily use a printer in the Seattle office, by simply navi-
gating to the naming context named “Seattle Printers.”

Federating naming hierarchies allows us to provide global access to objects, while still
maintaining local control of these objects. As long as these two offices agree on the structure and
format of the namespace, we’ll be able to easily and transparently share services across the orga-
nization. 

74 Chapter 6 • Object Location

Figure 6.8 Federated name hierarchies

"Boston Printers"

"Sales"
"Sales Color

Printer"

"Seattle Printers"

"Marketing"

Boston Name
Hierarchy

:Printer :Printer

Seattle Name
Hierarchy

:Printer :Printer

:Naming
Context

:Naming
Context

:Naming
Context

"Finance"



The CORBA Trading Object Service

The CORBA trading object service provides us with a powerful, flexible means of publishing
and looking up our objects. When our servers publish objects, they associate any number of proper-
ties of any type with the object. When clients perform a lookup, they specify a set of desired proper-
ties. The trader evaluates this lookup query, and returns a set of matching objects. 

Unlike a name hierarchy, the trader’s object directory is not structured in any formal way.
Instead, the trading service is based on the concept of a service type. A service type contains an
IDL interface identifier, as well as some additional data defining the attributes that can be asso-
ciated with this type. Before our servers can actually publish any objects, we must properly
define the number and type of attributes that can be associated with objects of this type. Once
we have defined a service type, our servers publish objects of this type. In trader terminology,
this is known as exporting a service offer. Servers export an object reference, along with attrib-
utes that identify this particular service offer. These offers must follow the format described by a
previously defined service type. The collection of offers exported by servers to a trader makes
up its trading space.

Clients look up objects in the trading space by performing a query. Clients specify a service
type, as well as a set of desired properties and constraints. The trading service evaluates the supplied
criteria and returns an ordered set of matching objects. 

The trading object service IDL is complex, and we do not fully explain it here. Instead, we
will work with an abstraction of the IDL, which is simpler to explain and conceptually provides the
same set of operations. For a fully detailed explanation, see the CORBA specification or your trad-
ing object service programming guide.

Figure 6.9 illustrates our application components’ use of the trading service. The simplified
IDL shown below contains the essential arguments for each of the methods implemented by the
trader.

CORBA Object Location Services 75

Figure 6.9 Trading Object Service Diagram

Administrator

Server

Client

add_type

export

query

add_type()
export()
query()

TradingObjectService



// pseudo-IDL
interface TradingService
{

// define a new service type
serviceTypeID add_type(in string serviceTypeName,

in string IDLInterfaceIdentifier,
in propertyDefinitionSeq definedProperties);

// publish an offer to the trader
offerId export(in Object reference,

in string serviceTypeName,
in propertySeq properties);

// look up one or more matching offers
void query (in string serviceTypeName,

in string constraint,
in specifiedProperties propertiesToReturn,
out offerSeq offers);

};

Administrator: Define Service Types
When using the trading service, the first step is to define the service types that will be sup-

ported. Each service type corresponds to a single IDL interface1 and defines the set of attributes that
can be used to describe this service offer. Let’s examine a simple example. This uses the simple ser-
vice type notation from the OMG CORBA trading object service specification. (Note that this is not
IDL, but is just a convenient notation for specifying service types.)

service PrinterService {
interface Printer;
mandatory property string location;
mandatory property sequence<string> supportedFormats;
mandatory property long pagesPerMinute;

};

This notation is useful for compactly describing service offers. It contains the IDL interface
identifier as well as any number of property definitions for this service type. In this simple example,
we are defining a service type called PrinterService , which applies to objects that implement
the Printer interface. We have defined three properties associated with this service type,loca-
tion , supportedFormats , and pagesPerMinute . All of these properties are specified as
being mandatory , which means that when a server exports an offer of this service type, it must
provide values for all of these properties. The defined properties can be of any IDL data type. Our
example uses a string, a sequence of strings, and a long. 

Let’s consider a second service type example, which is more complex.

76 Chapter 6 • Object Location

1 The trading service also supports inheritance of service types, which is useful for reflecting the inheritance of the cor-
responding IDL interfaces.



service CompanyResearchService {
interface Company;
mandatory property string companyName;
mandatory property sequence<string> sectors;

property float currentStockPrice;
};

Here, we have defined a service type called CompanyResearchService . This service type is
used to describe objects that implement the IDL interface Company. This service type has defined a
number of properties, of varying IDL types. One of these properties is not defined as mandatory ,
which means that offers exported by servers are not required to provide a value for this property. So
far, all the properties we have mentioned are static properties. A static property has a value provided
for it at the time the server exports its offer. For instance, when our server exports a PrinterService
offer, it will provide values for the location and supportedFormats properties.

The trading service also supports dynamic properties. Rather than supplying a value when the
offer is exported, our server instead supplies a callback object. Only when a client performs a query
will the trader obtain a value for this property. It does so by making an invocation on this callback
object. The server that exported this offer must determine the property’s value current value, and
return it.

Dynamic properties are very useful when we have attributes that we decide are important for
our clients to be able to query on, but happen to frequently change in value. In this example, the
currentStockPrice property is a dynamic property. Our client application needs to be able to
find companies based on their stock price. Since a company’s stock price changes frequently,
dynamic properties allow us to perform this query, in a standard, efficient manner.2

Servers: Export Offers
Once our administrator has defined the service types that will be used by our applications, our

servers can export their objects to the trading service. Servers accomplish this by invoking the
export() method on an object in the trading service, supplying an object, a string identifying the
service type, and a sequence of properties.

The object is, of course, an object that implements a particular IDL interface. In particular, it
must implement the interface associated with the specified service type.3 The server also provides a
sequence of properties, which are name-value structures. Each property name must match a prop-
erty name defined in the specified service type. The server must also supply a value for each of the
properties. This value is either a concrete value (for static properties), or a callback object (for
dynamic properties).

The trader, of course, imposes some consistency checks on offers. In particular, it verifies that
the exported object is of an appropriate type, and that values have been supplied for all the manda-
tory properties. 

CORBA Object Location Services 77

2 Interestingly, dynamic properties are not specified as such at the time of service type definition. Instead, this is speci-
fied when each offer is exported by a server. Any property can be a dynamic property if the exporting server chooses to imple-
ment it as such. Therefore, a single property could have a static value supplied for it in one offer, and support dynamic
evaluation in another offer.

3 The exported object can also be of a type that inherits from the service type’s interface.



Clients: Query for Matching Offers
This final step is to have our clients look up objects in the trading service. Clients of the trader

invoke a query() method on an object in the trader, supplying a number of parameters. First, the
client specifies the desired service type. This must match a service type previously defined by the
administrator. Recall that a service type defines a set of property names and data types. When
servers export offers, they supply values for some (or all) of these properties. Our clients query this
set of exported offers by supplying a set of constraints. The trading service evaluates this query and
finds a set of offers that match the specified constraints. These offers are returned to the client.

Unlike the name service (which can only return a single object reference as the result of a
lookup), the trading service is designed to return multiple offers from a single query. These offers
contain not just the object reference, but also some (or all) of the offer’s properties. Rather than hav-
ing the trader automatically returning all of an offer’s (potentially many) properties, clients have
complete control over the set of properties that are returned with the matching offers. 

Let’s examine the parameters to query() in more detail. The constraint string specified by
the client is conceptually similar to a SQL WHERE clause. It specifies the required values for prop-
erties against which all offers of a particular service type are to be filtered. This string follows a for-
mat specified by the OMG, as part of the trading object service specification. Let’s take a look at an
sample constraint string, from a case where our client is querying for a PrinterService offer:

(location == 'first floor') and (pagesPerMinute > 10)

This constraint string searches for offers that are on the first floor, and can print more than 10
pages per minute.

Here’s another sample constraint string, where our client is querying on the CompanyRe-
searchService offers:

('airline' in sectors) and (currentStockPrice < 100.00)

This query searches for companies in the airline sector, with a current stock price of less than
100.00.

This constraint language provides a flexible mechanism that allows our clients to specify an
arbitrarily complex set of criteria for the trader to use to filter the offers.

The client also specifies a list of properties which should be returned by the trader. Recall that
the trader returns a sequence of matching offers to the client. This allows the client to further qualify
the matching offers before it begins using one. For example, information about the matching offers
could be presented to a user, who would then choose the appropriate target. Or, the application could
look at the returned values and perform some additional processing on them before determining
which offer to use. Rather than having the trader automatically return the values for all of an offer’s
properties, the client supplies a specifiedProperties type. This union contains an enumerated
type indicating whether the client wants all of an offer’s properties, none of the properties, or some
of the properties. If the client wants some of the properties, it specifies which ones by passing in a
sequence of property name strings.

The trader returns a sequence of offers to the client. Each offer contains the object reference,
as well as a (possibly empty) sequence of name-value pairs, for the requested properties.

78 Chapter 6 • Object Location



Designing a Trading Space
Designing a trading space is primarily a matter of defining service types. Evaluate the ways in

which your client applications need to be able to find objects, and define service types made up of
those properties. Then, your servers simply export offers, and your clients query the trading service
for matches. The trading service does the heavy lifting.

One factor to consider is, of course, the logical and geographical separation of your compo-
nents. Applications may best be serviced by traders that are close to them, logically or physically.
However, a single trader can only return matches from the set of offers that have been directly
exported to that trader instance. To overcome this limitation, the trading service supports linked
traders. When traders are linked together, they can forward client queries to other traders, to find
additional matching offers. This link follow behavioris determined by both the trader’s configura-
tion and some additional options supplied by the client when it performs a query. By linking traders
together (also known as federating), we form a graph of linked traders. By federating traders across
domains, we can provide a wide variety of services to our clients.

Federation depends, of course, on a standardized set of service types. All the linked traders
must agree on the precise naming conventions for service types, IDL interfaces, and property
names. Today, such an agreement is only likely within a particular organization. However, as the
commercial acceptance of CORBA becomes even more widespread, we envision standardized trad-
ing spaces defined for entire industry domains.

Other Ways to Locate Objects
In addition to using CORBA services to locate objects, there are other ways to accomplish this as
well. We first mention using object reference strings, which is a CORBA-compliant approach that
fits into our object location model. Then, we discuss factory pattern. Factories are simply objects
that return other objects. This pattern is commonly used throughout CORBA, and is very effec-
tive. Next, we cover ORB-specific approaches. These proprietary mechanisms are useful, but are
often limited in ways that the CORBA services are not. Finally, we discuss the issue of bootstrap-
ping, which is a CORBA-compliant way for an object to obtain a reference to one of the CORBA
services. 

Using Object Reference Strings

Another CORBA-compliant way of obtaining object references is to use object reference strings.
The CORBA specification requires that ORBs support the COBRA::ORB::object_to_string()
method. This method stringifiesthe supplied object reference, converting it into a standard string for-
mat. A client application invokes the CORBA::ORB::string_to_object() method, and the ORB
converts this string back into an object reference. 

This approach follows our model for locating objects, although the object directory in this
case is not a service, but rather just a container chosen by the application designer. Our server pub-
lishes its objects by stringifying them, and writing the string to some output location. Logically,
these stringified object references are stored in an object directory. In practice, these tend to be
stored in client-side configuration files or shell scripts. Client applications look up objects by retriev-
ing the string from its storage location and converting it back into an object reference. 

CORBA Object Location Services 79



Of course, our client and server programmers must agree on how these object reference
strings are managed. When a server writes an object reference to a file, for instance, client develop-
ers must know what this file is called, and what object is denoted by the reference contained in it.
They must then transfer this string to the client application, which must use it appropriately. This
administrative coordination is comparable to that required when using the naming or trading ser-
vices. In both those instances, client and server developers must agree on the structure and names of
entities as well.

Using Factory Objects

A commonly used pattern in CORBA systems is that of the factory object. A factory is any
object that returns a reference to another object as the result of a method invocation. We’ve
already seen an example of a factory object—the PortfolioManager object in our Portfolio
Manager. It’s important to note that factory objects are not just used for creating new CORBA
objects, but can also be used to return references to existing CORBA objects. This is demon-
strated in the PortfolioManager IDL, part of which is shown below.

// IDL fragment from PortfolioManager
interface PortfolioManager
{

// This method creates and returns a new Portfolio 
// object
Portfolio newPortfolio(in string id, 

in string password);

// This method returns a reference to an 
// existing Portfolio object
Portfolio login(in string id, 

in string password);
}

Factory objects are extremely useful, especially when there are a large number of objects
that clients can use. Rather than publishing references to all the servant objects, the server can
publish just a few factory objects, which the client then uses to obtain references to the remain-
ing objects that it needs. Note that factories are also useful for reducing the number of objects
that have to be active in a server process at one time. Rather than eagerly instantiating all possi-
ble objects, factories allow the server programmer to defer the instantiation of an object until
clients explicitly request it. Both of these benefits make factories important for most large-scale
CORBA systems.

In the IDL shown above, the factory returns an object of a specific type, a Portfolio . A
common alternative to this is to have the factory return an object of the generic type Object . This
is the approach taken, for example, by the naming service IDL. It allows a factory to return object
references of arbitrary types, at the cost of requiring the caller to perform a _narrow() on the
returned reference.

80 Chapter 6 • Object Location



ORB-Specific Approaches

In addition to supporting the compliant methods specified by CORBA, commercial ORBs
will typically also support a proprietary mechanism for locating objects. These mechanisms tend to
be very simple to use, and are appealing from that perspective. 

For instance, ORBs from both IONA Technologies and Inprise implement proprietary
_bind() methods, which are generated by the IDL compiler for each interface. The details of
these two mechanisms are quite different, but they both suffer from the same limitation—a lack
of abstraction. 

In both cases, client programmers must provide information that uniquely identifies the target
object within an ORB domain. In particular, this information is closely tied to the object instance
and system configuration. For example, the client may have to specify information such as the host
on which the servant object is running, or the ORB’s internal identifier for the object. There is no
facility for associating any higher-level information about an object. Clients can only look up
objects using this low-level information.

Nonetheless, these proprietary approaches have achieved widespread use. In many cases, this
is due to their simplicity. They are very easy to use, and this tended to make them the first choice of
object location mechanisms. Over time, we expect that use of these mechanisms will diminish. New
applications will make use of the more flexible approaches discussed here, and ORB vendors will
deprecate these proprietary methods.

Bootstrapping

The naming and trading services are implemented, naturally, by servant objects that provide
a particular interface. Our components (both clients and servers) act as clients when communicat-
ing with these services. Just like any CORBA client, however, we need to obtain a reference to
these objects before we can begin using them. So, how can we get these references? The recom-
mended way to obtain a reference is to use the naming or trading service. Clearly, we need some
other way to bootstrap our programs so that they can obtain an initial reference to an object in one
of these services. 

One CORBA-compliant way to bootstrap is through the CORBA::ORB::resolve_ini-
tial_references() method. This call takes as input a single string parameter, and returns an
object reference. This string identifies the service from which the caller wants an object reference.
Legal values for this string include “NameService” and “TradingService.” These strings are speci-
fied by the OMG, and all ORBs must return an object reference for the corresponding service. 

Another approach would be to obtain an object reference for the desired service, in string form.
This stringified object reference could either be output by the service itself or generated by an IOR cre-
ation tool. Once our clients have obtained this string (read in from a configuration file, for instance),
they can call CORBA::ORB::string_to_object() to create a reference for the object. 

No matter which bootstrapping mechanism we use, once our applications obtain an initial ref-
erence to the repository, they can simply begin using it to publish or lookup application objects.

Other Ways to Locate Objects 81



Selecting An Object Location Mechanism
Choosing which object location mechanism to use is an important decision. Selecting an inappro-
priate tool can result in an inflexible, difficult-to-maintain system. Although the object location
mechanisms differ in their complexity, none of them are truly difficult to use. Once the administra-
tive infrastructure has been defined, all the approaches are straightforward to use (perhaps aided by
some client-side wrapper classes customized for your particular environment). 

Our primary consideration should be the complexity of our environment. How many objects
are going to be published to the object directory? How complex are the criteria that our clients will
be using to look up objects? What qualities of service do we require? It’s important to make certain
that we have a good understanding of how our clients will be looking up objects.

In general, we recommend avoiding the use of ORB-specific mechanisms, for the reasons
mentioned earlier. They rely on proprietary mechanisms, have no facility for associating higher-
level information with an object, and cannot interoperate with other ORBs. 

For very simple, static environments, the use of object reference strings is appropriate. This
approach does not rely on the availability of any additional service. Clients just use the object refer-
ence string and connect to the appropriate server. Often, clients will retrieve a single object refer-
ence string from a configuration file, then use this object as a factory to gain access to the business
objects needed. 

Of course, if the servant objects are ever moved, our clients will have to be reconfigured with
a new object reference string. With large numbers of clients, or geographically distributed clients,
this can be difficult and expensive. If this limitation is acceptable, then we can use object reference
strings effectively.

Comparing the Naming and Trading Services

For more complex environments, the naming or trading services are more appropriate. They
do require some forethought, but provide us with a great deal more functionality than the other
approaches. The naming and trading services are most beneficial in slightly differing situations.

The trading space differs from a name hierarchy in that it is multidimensional. Every service
type can have any number of properties, and each property defined within a service type is orthogo-
nal to all the others. In addition, new properties can be added to a service type without affecting
existing offers. Compare this to the name hierarchy, which is really just two-dimensional. Each
object that our servers bind to a name hierarchy only has two pieces of information associated with
it—its name and its place in the hierarchy. 

Consider our printer objects. As we expressed in the PrinterService service type, our
clients need to be able to locate printers based on their physical location as well as their print
speed. In some cases, end users will want to print to the closest printer, while in other cases they
want to find the fastest printer. As we have already seen, supporting these different types of lookup
operations is straightforward when using the trader. Trying to duplicate this functionality with the
name service, however, is difficult. We would end up with two parallel hierarchies, or a deeply
nested hierarchy.

Now, consider what happens if we decide to add a third attribute on which clients can look up
objects. Adding this to our service type in the trader is trivial. However, adding this to the name hier-

82 Chapter 6 • Object Location



archy requires a complete reworking of the hierarchy. In cases such as this, it quickly becomes
apparent that the naming service is not a good choice. 

In general, if our clients are only looking up objects based on a fixed set of criteria, then the
naming service can usually model this well. If, on the other hand, our clients use varying sets of cri-
teria to look up objects, then the trading service is often a better choice.

Selecting Objects For Publication
How should we decide which of our servant objects should be published to the object directory? The
answer, of course, depends on how our system is architected, and how the clients will be using the
servant objects. Some systems contain a relatively small, fixed set of servant objects that all clients
utilize. In cases such as this, it often makes sense to publish all of these objects. Other systems con-
tain a relatively small number of factory objects, which are used to create short-lived, transient
objects that clients will use temporarily. In these cases, we should just publish the factory objects.
The transient objects are returned to clients by a factory, and are typically dedicated to one client,
containing client-specific state. Because of this, we don’t want them to be generally available, so
there’s no reason to publish them. Also, since these objects don’t exist until requested by clients,
publishing and looking them up would simply be unnecessary overhead. 

Now, let’s consider a system with a large number of objects—our Portfolio Manager system,
with thousands of Portfolio objects in our database. We need to decide how to structure our nam-
ing service hierarchy. One approach would be to create an entry for each Portfolio object, named by
its unique account number. Alternatively, we could simply export our PortfolioManager object,
and have clients use that to obtain a reference to a specific Portfolio object. This is the preferred
approach, for a number of reasons. First, it saves us the trouble of having to instantiate each
Portfolio object, and bind it to the naming service. Second, adding many entries to the nam-
ing service will increase the size of its database, and slow down its processing. Third, by just
exporting the PortfolioManager factory, it is much easier to relocate our server, or to provide
a group of objects for load balancing. We can temporarily (or permanently) relocate our server by
simply replacing one entry in the naming service, rather than having to enumerate through thou-
sands of objects.

When our system contains a large number of objects within a single server process, it is often
better to export a small number of factory objects from that process, rather than exporting all the ser-
vant objects. If our system, however, has objects distributed among many server processes, then it
can make sense to export all the servant objects.

Selecting An Object Location Mechanism 83


