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Imagine you’re writing a text editor application. The editor needs to wrap words so they stay together on a line—but what
constitutes a "word," and how do you explain it to the application?

The simplest answer is that a word is a series of nonwhitespace characters followed by a series of whitespace characters.
But this isn't always true: The Japanese and Chinese don’t separate their words with spaces—a line break can occur
anywhere, even in the middle of a word. Further, both Japanese and Chinese have punctuation and diacritical marks that
can’t start or end a line, so this must also be taken into account. Thai also doesn’t separate its words with spaces, but in
Thai, the application still must not break in the middle of a word.

Even in English, the problem is more complicated than simply keeping a run of nonwhitespace followed by a run of
whitespace together: Some whitespace characters (such as the nonbreaking space) prevent line breaks, and some
nonwhitespace characters (such as hyphens and dashes) allow line breaks. Worse, the behavior of some characters is
context-dependent: a break is allowed after a hyphen when it’s followed by letters, but not when it’s followed by numbers
(where it functions as the minus sign).

Furthermore, what constitutes a "word" depends on the operation you’re performing on the text. For word wrapping, you
want to keep a word together with any punctuation adjacent to it, and with any whitespace that follows it, but if you do a find-and-replace
operation with the "whole words only" option turned on, these characters must be separated from the word itself—or the find operation will fail to
match the word. (From here on, all examples in this paper will deal with this kind of word-break iteration rather than with detection of possible
line-break positions.)

These problems are the motivation behind the BreakIterator framework in the Java class libraries. They are also cases of the general problem of
text-boundary analysis, or the breaking down of a large body of text into its constituent elements according to some set of criteria. The Java
BreakIterator class was written by Taligent, a subsidiary of IBM, now part of IBM’s Center for Java Technology. We recently finished a
completely new and updated version of the framework that will be made available on IBM’s Alphaworks Web site. This paper examines the
internals of both frameworks and explores some of the issues that come up when designing a framework for text-boundary analysis.

Using character pairs to find word boundaries

As with the other international frameworks in the Java class libraries, BreakIterator follows a data-driven model: Whatever the desired behavior,
the basic algorithm remains the same, and the data tables driving it vary. The current version of BreakIterator provides four predefined types of
text-boundary analysis: 

Line-break detection. This locates positions in text where it would be legal for a text editor to break a line. 
Word-boundary detection. This locates the starts and ends of words for such purposes as double-click selection and the "Find whole
words" operation. 
Character-boundary detection. This is necessary because a single character—as a user understands it—may be encoded as a
sequence of Unicode code points rather than as a single value (base-accent pairs, conjoining Hangul Jamo, surrogate pairs, and the
DOS CR-LF combination are all examples). 
Sentence-boundary detection. 

All four types of analysis are performed by a single class, SimpleTextBoundary, using four different sets of data tables.

A simple and powerful data-driven approach to this problem is to base the behavior on character pairs: Whether to place a break at a given
position is determined by the characters on either side of the prospective break position. (This approach actually works quite well, and will handle
the examples described above.) For example, a word-selection table would put breaks between punctuation and letters, and between letters and
whitespace, but not between consecutive letters or consecutive whitespace characters. A line-wrapping table would put a break between a space
and a letter or punctuation mark, but not between a letter or punctuation mark and a space. It would never put a break on either side of a
nonbreaking space; it would put a break between a hyphen and a letter; but it would not between a hyphen and a digit. The Japanese JIS-X 4051
standard for line composition in Japanese, for example, uses this approach. A Japanese line-breaking table would put a break between
consecutive Kanji characters, but not between a Kanji character and an ending punctuation mark.

The pairs approach is also simple to implement: the data table is simply a two-dimensional array of Boolean values, with each row and column
corresponding to a character or character category. One axis represents characters before the possible break position, and the other axis
represents characters after it. This is an example of how such a table for word-boundary detection might look, with the rows representing the first
character, and the columns the second (an "X" indicates where breaks should go):
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 ltr pun - ’ sp dgt .

letter  X   X  X

punct X X X X X X X

-  X X X X  X

’  X X X X X X

space X X X X  X X

digit  X X X X   

. X X X X X  X

The pairs approach doesn’t require or consider any context; it only has to look at two characters to determine whether there’s a break between
them. This is both a strength and a weakness: The strength is that it makes random access into the document easier. The weakness is that
there are a lot of situations that require looking at more than two characters to produce truly optimal results.

For example, consider the ASCII apostrophe character. It can be used as either an apostrophe or as a single quotation mark. When finding word
boundaries (as in the "Find whole words" example), an apostrophe is considered part of a word, but a quote mark is not. It’s generally impossible
to determine definitively whether the ASCII apostrophe is being used as an apostrophe or as a quote mark, although one can come close using a
dictionary-based algorithm. Without going to all that extra trouble, a good rule of thumb is that the ASCII apostrophe character should be treated
as an apostrophe (that is, counted as part of the word) if it has a letter on either side, and as a quote mark (separated from the word) the rest of
the time. But doing this requires looking at three characters. 

Similarly, a period or comma can be either punctuation or a decimal point, depending on whether it is flanked by digits. This also requires looking
at three characters.

Unicode nonspacing marks also complicate the algorithm. Nonspacing marks always stick to the character that precedes them, but are generally
otherwise transparent to the break algorithm. This means the breaking engine must scan to either end of a run of nonspacing marks to determine
whether there should be a break immediately after them.

Backing up the break position is possible without completely overhauling the algorithm, but it has some cost in code complexity and iteration
performance, and we have yet to encounter a real-world situation where it's necessary.

Grouping characters by "breaking" behavior
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It’s obviously impractical—and unnecessary—to have one column of the state-transition table for every Unicode character. Instead, characters
are grouped into categories based on their breaking behavior. The current BreakIterator code in the Java Development Kit (JDK) does this with a
two-level lookup. First, a character’s Unicode character category is looked up, and the character is assigned a breaking category based on the
Unicode category. But since characters in the same Unicode category could behave differently (for example, Arabic letters and Han ideographs
are both in the "other letter" category), there is an override table that lists all the characters whose breaking category should be different from the
one for their Unicode category. There is also a table of flags indicating whether a given Unicode category has overrides. For a category with
overrides, the override table is binary-searched to derive the breaking category. This can be rather slow, so there is also a fast-path category
table for characters within the ASCII range.

The new version of BreakIterator uses CompactArray to do character-category lookup. A CompactArray is a class designed specifically for
applications such as character-category lookup. The data is stored contiguously in an array, but divided into blocks. If two blocks are
identical—or overlap—the blocks are consolidated. A separate index is used to indicate the location of each block in the compressed array. For
arrays of data containing long stretches of the same value (or the same pattern of repeating values), considerable compression is possible and
lookup is fast (It's just two regular array lookups). CompactArray is used in a number of the Java internationalization classes.

Using regular expressions to create the state table

The state and category tables in the current BreakIterator implementation in the JDK are complicated and cryptic, making them hard to maintain.
And there's only one set of these tables used for all languages, making it impossible to support two languages with mutually-exclusive breaking
behavior. For example, in Japanese, most word processors handle a double-click by selecting an entire contiguous run of Kanji characters. This
works reasonably well because Kanji characters in Japanese are usually split by Kana characters, Latin characters, and punctuation. But in
Chinese, this behavior will usually select a whole paragraph (Although you want a double-click to select a single Han character, our current
framework doesn’t support this). The current BreakIterator implementation also doesn’t allow clients to customize the behavior of a
BreakIterator—if the built-in classes don’t support something the client wants to do, the client must create a whole new BreakIterator subclass of
his own—he can’t leverage the JDK code at all.

For all these reasons, we undertook an extensive revision of the BreakIterator framework (which will be available on IBM’s AlphaWorks Web
site). The centerpiece of this new framework is the RuleBasedBreakIterator class. This class essentially works the way the old class did (except
for the new category-lookup mechanism and some small changes to the iteration algorithms), but it builds the category and state tables from a
textual description. This description can be loaded from a resource, allowing different sets of breaking rules for different languages, or supplied
by the client, allowing customization. The description consists of a series of rules, each of which is either a substitution definition or a regular
expression.

The regular expression syntax is similar to that used by grep and perl, but omits many features of those languages. The whole rule-description
syntax is similar to that of the Backus Naur form (BNF) metalanguage, with a few differences: 

The rules must occur in bottom-up order: A definition for every substitution must appear before that substitution is used, and substitutions
can’t recurse. 
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We use "=" instead of ":=", and we separate rules with semicolons. 
Top-level rules aren’t named. 

A complete set of the special symbols is listed below: 

* match zero or more of the expression that precedes the asterisk
() encloses a sequence of characters. An expression in parentheses may be followed by *, causing the whole sequence to repeat.
| separates alternative expressions. Only valid inside ().
[] encloses a group of alternative characters. Inside [], the following additional characters can be used:

- specifies a range of characters leading from the character before the hyphen to the character after it, inclusive. The range is figured by
binary Unicode value—language-specific collation rules are not taken into account.

^ omits the following character (or group of characters in []) from the set
:: encloses an identifier for a particular Unicode character category. Adds all characters in that category to the set. The identifier between the

colons is one of the two-letter identifiers in the Unicode database (e.g., "Ps" for stating punctuation or "Sc" for currency symbols). The
user can also specify only the first letter of the category code to include all categories beginning with that letter (e.g., ":L:" would mean "all
letters" and be equivalent to ":Lu::Ll::Lt::Lm::Lo:").

<> encloses the name of a substitution
= defines a substitution. The left-hand side of the substitution is a name in <>, and the right-hand side is an expression in [] or ().
{} encloses a sequence of characters that is optional
. matches any single character
*? specifies a "nongreedy" match instead of a "greedy" match. Both will give the same result unless there is an overlap between the repeating

characters and the characters that follow the *? expression.
! precedes a rule to be used to specify backward iteration
/ specifies the position of the boundary if the text matches this rule (if not specified, the boundary goes at the end of the matching text).
; Separates rules from one another.
\ escape character. Causes the next character to be treated as a literal character rather than a special character. All non-alphanumeric and

noncontrol characters in the ASCII range are reserved, and must be preceded by \ even if they don’t have a special meaning to the parser
now.

For example, using the characters described above, a simplified subset of our word-boundary-detection algorithm (the same subset shown in the
state diagram) would be represented this way:

<let>=[:L:];
<dgt>=[:N:];
<mid-word>=[:Pd \"\’\.];
<mid-num>=[\"\’ \.\,];
<pre-num>=[:Sc:\#\.^¢];
<post-num>=[\%\&¢];
<word>=(<let><let>*(<mid-word><let><let>*)*);
<number>=(<dgt><dgt>*(<mid-num><dgt><dgt>*)*);
{<word>}(<number><word>)*{<number>{<post-num>}};
<pre-num>(<number><word>)*{<number>{<post-num>}};

The first eight lines are substitution definitions. They allow the name on the left-hand side of the = sign to be used in place of the expression on
the right. The first six lines define character categories. Notice that these categories can overlap: both <mid-word> and <mid-num> include the
quotation marks and the period. The actual character categories used by the BreakIterator are derived automatically from the expressions used in
the description.

<word> and <number> specify subexpressions used in the actual rules, allowing them to be shorter and less complicated. A <word> is one or
more letters, optionally followed by a <mid-word> and one or more letters. The <mid-word>/letter expression can repeat, so this expression
basically says "a <word> is a sequence of letters that may contain <mid-word> characters, so long as there are never two <mid-word>s in a row
and the sequence doesn’t begin or end with a <mid-word>." The <number> definition specifies the same pattern for digits and <mid-num>s.

Finally, the last two lines are the actual regular expressions that specify the break behavior. The first line says to keep together any sequence of
words and numbers. If this sequence ends with a number, it may also include a number-suffix character. The second line is the same as the
first, but allows a sequence of words and numbers that begins with a number to have a number-prefix character before it.

Rules in a BreakIterator description are effectively OR-ed together, and the BreakIterator normally uses a longest-match-wins algorithm. Our
build algorithm parses the regular expressions, builds the state table, and makes it deterministic in a single pass (with a separate pass at the end
to minimize the number of states) without building any intermediate data structures.

Finding logical sentence breaks

Supporting sentence-boundary detection required the addition of several other behaviors to the regular-expression parser. The main
sentence-break rules are as follows:

.*?<term>[<term><period><end>]*<space>*;
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.*?<period>[<period><end>]*<space>*/<start>*<sent-start>;

<term> is the set of all sentence-terminator characters (for example, "?" and "!"), <start> is starting punctuation (such as opening parentheses
and quotes), <end> is ending punctuation (closing parentheses and quotes), <period> and <space> are self-explanatory, and <sent-start> is
anything not in one of the other categories and not a lowercase letter or digit (in other words, any character that can begin a sentence).

The period is the "match any character" character, so ".*" means "match zero or more of any character." But we generally don’t want to use a
longest-match-wins algorithm with ".*" 

"[a-z]*abc" would match the longest sequence of letters ending in "abc", but what you probably want is to match the shortest sequence of letters
ending in "abc". The ? modifies * to allow this. Thus, "[a-z]*?abc" matches the shortest sequence of letters ending in "abc". So ".*?" in the above
expression matches characters until it encounters a <term> (sentence terminator such as ? or !). Then it advances across any ending
punctuation and any trailing whitespace before marking the boundary position.

The slash is the "put the break here" character. The second rule works the same as the first, but since a period is ambiguous, we must advance
past the break position and any starting punctuation and look at the first character of the next word. If it is a <sent-start> character (anything
except a lowercase letter or digit), we mark the position after the whitespace (where the / is) as the break position. Otherwise, everything is
considered to match the ".*?" token, and we go back to looking for periods.

One interesting thing highlighted by this approach to specifying break-iterator rules is that the new Java BreakIterator framework is basically no
more than a specialized regular-expression-matching framework.

Using "ignore characters" for special situations

Another addition to the old algorithm is the concept of an "ignore character." Ignore characters were added specifically to handle nonspacing
marks and format-control characters, which by definition don’t generally affect text-boundary positions. An ignore character is a character that is
transparent to the iteration algorithm. The iterator passes over ignore characters with no change in state. A break never occurs before an ignore
character—if there is to be a break between the characters on either side of a sequence of ignore characters, it always occurs after the
sequence of ignore characters.

Ignore characters are specified with the substitution-definition syntax: If you define a substitution named <ignore>, the characters it refers to are
considered to be ignore characters (unless they’re also referred to elsewhere in the description).

Handling "surrogate pairs"

The current version of RuleBasedBreakIterator doesn't offer specific support for surrogate pairs, but they can be handled using the current
capabilities. If an entire block of surrogates is assigned to the same category, the high surrogate in the pair can be assigned to that category and
the low surrogate can be made an ignore character. If different surrogate pairs in the same block have different behaviors, additional rules have
to be specified to show this. A possible future enhancement may be to allow surrogate pairs to be treated specially by the iteration algorithm and
assigned to character categories just as single Unicode characters are.

Simplifying reverse and random-access iteration

One problem with the state-table-based approach to text-boundary analysis is that it makes reverse and random-access iteration more difficult.
This is because the state table considers context: to accurately locate a boundary position, you have to start from a known break position or the
beginning of the document (which, by definition, is a known break position). Beginning iteration from a random spot in the document will lead to
erroneous results.

Both the old and new BreakIterator implementations handle this problem by having a second state table used for reverse and random-access
iteration. This extra state table doesn’t require context: You can begin iterating backwards from anywhere in the document. Instead of replicating
all the behavior of the forward state table in reverse, it simply provides a way to locate a "safe place" from which it's possible to start iterating
forward again. Thus, moving backward a step in the document involves backing up to the preceding safe position, iterating forward until the
original position is reached, and returning the position of the last break encountered before the starting position. Random-access iteration works
the same way: we back up from the starting position until we find a safe position to stop, then turn around and iterate forward until the desired
position is reached.

RuleBasedBreakIterator also derives the backward state table automatically from the rules the user specifies. But deriving a fully-reversed
version of the forward state tables turns out to extremely complicated and generally unnecessary. Instead, we use the "pairs" algorithm, where we
consider only the characters on either side of a prospective break position to determine whether to stop there. It’s a relatively simple matter to
examine the forward state table to find pairs of characters we always break between. This isn’t 100% optimal: it will cause us to skip some actual
break positions, but in practice it works quite well.

The one case where this approach doesn’t work well is sentence-boundary detection. With the rules used by the current JDK, at least for
English, the only places we can reliably stop based only on pairs is after a Unicode paragraph separator. This is terribly inefficient, especially in
long documents that don’t use the Unicode paragraph separator to separate paragraphs.

We considered several different ways of automatically generating a state table that eliminated this problem, but every approach was too
complicated to be workable. Instead, we fall back on relying on the user to tell us where the break positions would be: The client can include
additional rules in the BreakIterator description to be used to augment the automatically-generated backward state table with information that
allows it to stop at more break positions. These additional rules are distinguished from regular forward-iteration rules by preceding them with a !.
For sentence-break iteration, we added the following two rules:

!<sent-start><start>*<space>*<end>*<period>;
![<sent-start><lc><digit>]<start>*<space>*<end>*<term>;
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When we augmented the automatically-generated, backwards, sentence-boundary state table with these rules, we were able to get backwards,
sentence-boundary iteration performance up to an acceptable level.

Consulting a dictionary to find break points

Some languages, such as Thai, don’t use spaces between words, but still require line wrapping to occur only on word boundaries. Other
languages, such as Japanese, can put line breaks anywhere, including the middle of a word, but may need to locate real-word boundaries for
other things, such as database indexing. Some languages, such as German and Korean, often use long compound words that must be broken
up into their constituent parts for some types of processing. The thing that all of these problems have in common is that there are often no
unambiguous cues in the text as to where a word boundary is. One must find word boundaries by comparing the text being analyzed with a list of
known words. The old BreakIterator framework doesn’t support this capability. The new one introduces a new class,
DictionaryBasedBreakIterator, specifically for this.

DictionaryBasedBreakIterator is a subclass of RuleBasedBreakIterator and uses the regular rule-based algorithm to identify the endpoints of
sequences of characters that must be further divided using the dictionary. This way, we incur the additional cost of dictionary-based iteration only
when it's truly necessary, and we can take advantage of natural "signposts" in the text (such as punctuation and spaces) to help us divide it.

DictionaryBasedBreakIterator adds one item to the rule syntax: It defines another special substitution name, <dictionary>, which identifies
characters that occur in sequences requiring the dictionary. Whenever the iterator encounters two or more <dictionary> characters in a row, it
invokes the dictionary.

The dictionary is itself implemented as a state machine. Our current implementation uses a two-dimensional array that is heavily compressed
and indexed (the exact details are still proprietary because they’re still in flux). The advantage of this scheme is that, like CompactArray, it allows
fast lookup—and lookup speed isn't dependent on the size of the dictionary. The compression produces a file that, with indexes, is generally less
than 25% larger than the original raw word list in a single-byte encoding, and significantly smaller than the raw word list in Unicode.

Our iteration algorithm is more complex than the straight maximal-match algorithm often used for this kind of word breaking. As we advance
through the text being divided, we keep track of every possible word-break position we encounter along the way. If we reach the end of the range
being divided and it’s a word boundary, we’re done. If we reach a character that doesn’t match anything (for example, in English, there are no
words starting with "thisl", so we’d get a mismatch when we reached the "l"), we back up to the last possible break position, mark it as a real
break position and start over from that point. Thus, we continue trying combinations of word-boundary positions until either we find a valid
sequence of words that uses all the characters in the range, or we exhaust our possibilities.

To see how this works, consider the following example: We start by looking for a maximal match, which gives us "theme" for the first word, but
"nd" for the second word. So we back up and try "them" for the first word. We get as far as "end" and "in" before getting to "et." (For the
purposes of this example, we’re going to say "et" isn’t a word. It’s definitely unusual in modern American English.) So we have to back all the way
back to the beginning and try "the" as the first word before we finally make it all the way through the string we’re trying to divide with valid words
all the way.

If we exhausted our possibilities without finding a valid sequence of words, it either means there’s an error in the text, or the text includes a word
that isn’t in the dictionary. In either case, we restore the set of break positions that matched the most characters, advance one character past
where the mismatch occurred in that sequence, and start over from there. This works pretty well: usually only one or two boundary positions
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around the error are in the wrong place.

In either case, we will eventually make it from one end of the range being divided to the other. At this point, we’ve found all the word-break
positions in this range, and we cache them all so we don’t have to do this work again until the iterator leaves this range.

The only situations where our dictionary-based algorithm produces wrong results are places where a sequence of characters can be divided up
into legal words in more than one way. In this case, we opt for the sequence with the longest starting word, which isn’t always right: Since I don’t
speak Thai, I tested this algorithm using the Declaration of Independence with the spaces taken out. The first phrase, "When, in the course of
human events…" came out as "When, in the course of humane vents…" The phrase "a long" came out as "along," and, my personal favorite, the
phrase "to pass" came out as "top ass." The only way to prevent this type of thing, however, is with some kind of sophisticated language model,
which is probably overkill for simple word wrapping and word selection. One possible approach may be to expose a subclassing API that allows
clients to add this kind of extra functionality. In the meantime, a user can always clear up the ambiguity by inserting zero-width spaces into the
text as needed.

Downloading the new BreakIterator framework

The new BreakIterator framework is available now in Java for free at IBM’s alphaWorks. We are currently negotiating with Sun to roll this version
into future versions of the JDK: Check Sun's Java homepage and IBM’s developerWorks for news. A C++ version will be available as part of
IBM’s International Classes for Unicode technology sometime in early 1999. Keep an eye on http://www.ibm.com/java/tools/international-classes/
for developments. You can also write to me at rgillam@us.ibm.com if you have questions.
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