
Advertisement: Support JavaWorld, click here!

July 2000

FUELING INNOVATION

Search

Topical index
Net News Central
Developer Tools Guide
Book Catalog
Writers Guidelines
Privacy Policy
Copyright

Java Q&A

Build a better mouse trap
Take a look at the ins and outs of mouse events

By Tony Sintes

What is the difference between the mouseClicked() and
mousePressed() methods of the MouseListener interface?

Yours is one of the many questions I receive regarding mouse events
-- obviously, it's a hot topic! Let's take a detailed look at the answer.

Java's AWT library supplies two interfaces that allow listeners to receive
mouse events. One is the java.awt.event.MouseListener:

public interface MouseListener extends EventListener
{
 public void mousePressed(MouseEvent e);
 public void mouseReleased(MouseEvent e);
 public void mouseClicked(MouseEvent e);
 public void mouseEntered(MouseEvent e);
 public void mouseExited(MouseEvent e);
}

The other, the java.awt.event.MouseMotionListener:

public interface MouseMotionListener extends EventListener
{
 public void mouseDragged(MouseEvent e);
 public void mouseMoved(MouseEvent e);
}

Swing supplies the MouseInputListener, an interface that extends both the MouseMotionListener and

This month's Java Q&As

Linux and Java: What's the
scoop?

Want more? See the Java
Q&A index for the full Q&A
catalog.

Do you have a burning Java
question? One whose answer
would benefit not just you, but
other JavaWorld readers?
We've got the experts to help.
Submit your Java Q&A
questions to
javaqa@javaworld.com.

1 of 4 25/07/2000 14:53

Build a better mouse trap - JavaWorld July 2000 http://www.javaworld.com/javaworld/javaqa/2000-07/02-qa-0714-mouse_p.html

MouseListener interfaces.

Let's look at each method found in these interfaces:

mousePressed() occurs when the user presses the mouse button.

mouseReleased() occurs when the user releases the mouse button.

mouseClicked() occurs when the user presses and releases the mouse button. A user normally
clicks the mouse button when selecting or double clicking an icon. (A double click is two mouse
clicks in succession.) A mouse action will not result in a click if the user moves the mouse before
releasing the button.

Since a mouse click is the combination of pressing and releasing the mouse button, before the event
is dispatched to the mouseClicked() method, the mousePressed() and mouseReleased()
methods will both be called.

mouseEntered() occurs when the mouse leaves its current component and enters the component
you are listening to.

mouseExited() occurs when the mouse leaves the component you are listening to. This event
occurs the instant the mouse pointer no longer resides over the component.

mouseDragged() occurs when the user presses the mouse button and moves the mouse before
releasing the button. Releasing the mouse button after a mouseDragged() will not result in a
mouseClicked().

mouseMoved() occurs when the mouse moves within the component without being dragged.

To listen to the mouse, one must either implement one or both of these interfaces, or extend a mouse
adapter class. The AWT supplies two listener adapters: java.awt.event.MouseAdapter and
java.awt.event.MouseMotionAdapter. Swing supplies an adapter for the MouseInputListener called
javax.swing.event.MouseInputAdapter. Adapters eliminate the need to implement each method of the
interface. Instead, you simply extend the adapter and override the methods you want to listen to.

If you are still confused, play around with the API and write a small test application or applet. Sometimes
experimentation is the best way to understand the different events. I've written a small application that helps
to visualize the differences between mouse events. Here's the full source (available for download in
Resources):

import java.awt.*;
import java.awt.event.*;
public class MouseTest extends Frame
{
 public MouseTest()
 {
 Button b = new Button("JavaWorld JavaQ&A");
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 System.exit(0);
 }
 }

2 of 4 25/07/2000 14:53

Build a better mouse trap - JavaWorld July 2000 http://www.javaworld.com/javaworld/javaqa/2000-07/02-qa-0714-mouse_p.html

);
 add(b,BorderLayout.NORTH);
 addMouseListener(new MouseTest.MouseHandler());
 addMouseMotionListener(new MouseTest.MouseMotionHandler());
 }

 // MouseHandler is an inner class that implements the MouseListener.
 // Each method simply prints out a message to the command line.
 private class MouseHandler implements MouseListener
 {
 public void mousePressed(MouseEvent e)
 {
 System.out.println("mouse pressed");
 }
 public void mouseClicked(MouseEvent e)
 {
 System.out.println("moused clicked");
 }
 public void mouseReleased(MouseEvent e)
 {
 System.out.println("mouse released");
 }
 public void mouseEntered(MouseEvent e)
 {
 System.out.println("mouse entered");
 }
 public void mouseExited(MouseEvent e)
 {
 System.out.println("mouse exited");
 }
 }
 // MouseMotionHandler is an inner class that implements the MouseMotionListener.
 // Each method simply prints out a message to the command line.
 private class MouseMotionHandler implements MouseMotionListener
 {
 public void mouseMoved(MouseEvent e)
 {
 System.out.println("mouse moved");
 }
 public void mouseDragged(MouseEvent e)
 {
 System.out.println("mouse dragged");
 }
 }
 public static void main(String[] args)
 {
 new MouseTest().show();
 }
}

The application creates a frame and a button. As you move the mouse and press buttons, the application
prints text messages to the command line, allowing you to see the mouse's actions map to events.

Writing a small test application such as the one above is a good way to experiment with most unfamiliar
APIs.

Please see Resources for links to various interfaces' javadocs.

About the author
Tony Sintes is a principal consultant at BroadVision. Tony, a Sun-certified Java 1.1 programmer and Java
2 developer, has worked with Java since 1997.

3 of 4 25/07/2000 14:53

Build a better mouse trap - JavaWorld July 2000 http://www.javaworld.com/javaworld/javaqa/2000-07/02-qa-0714-mouse_p.html

Home | Mail this Story | Resources and Related Links

Advertisement: Support JavaWorld, click here!

(c) Copyright 2000 ITworld.com, Inc., an IDG Communications company

Resources

To download the complete source code in zip format, go to:
http://www.javaworld.com/javaqa/2000-07/mouse/02-qa-0714-mouse.zip
For the java.awt.event.MouseListener javadoc, go to:
http://java.sun.com/j2se/1.3/docs/api/java/awt/event/MouseListener.html
For the java.awt.event.MouseMotionListener javadoc, go to:
http://java.sun.com/j2se/1.3/docs/api/java/awt/event/MouseMotionListener.html
For Swing's MouseInputListener interface javadoc, go to:
http://java.sun.com/j2se/1.3/docs/api/javax/swing/event/MouseInputListener.html

Feedback: jweditors@javaworld.com
Technical difficulties: webmaster@javaworld.com
URL: http://www.javaworld.com/javaqa/2000-07/02-qa-0714-mouse.html
Last modified: Friday, July 14, 2000

4 of 4 25/07/2000 14:53

Build a better mouse trap - JavaWorld July 2000 http://www.javaworld.com/javaworld/javaqa/2000-07/02-qa-0714-mouse_p.html

