

SEPTEMBER 2002

Secure Design with Flash Player

Macromedia’s Flash Player provides a rich set of multimedia
capabilities that permits the creation of compelling
applications. Because security features are essential in the
widespread deployment of applications, the Flash Player
provides functionality that protects both application and host
platform. This brief identifies design and development
practices that make effective use of the security features within
Flash Player.

 P r o d u c t B r i e f i n g

@stake partnered with Macromedia to assess the design and operation of Flash
Player 6 (hereafter referred to simply as Flash Player) with respect to industry best
practices in security.

��An Application Architecture Assessment included a review of the
application’s design, its interactions with the operating system and external
components, and its handling of potentially confidential data.

��An Application Penetration Assessment provided a practical demonstration
of the security aspects of the Flash Player by attempting to circumvent those
features intended to protect the confidentiality and integrity of the
application, its data, and its host platform.

Like all software, the Flash Player functions according to the requirements and
expectations of its design scope. This document describes the boundaries within
which the Flash Player meets requirements to protect its data and host platform. To
retain the intended security properties of the Flash Player platform, developers
should design and develop their applications within these boundaries.

Flash Player Architecture Overview

Macromedia’s Flash Player is comprised of several components providing
functionality at different levels. The core player consists of platform-independent
code that governs the interpretation, execution, and rendering of Flash content.
Operating system-specific modules implement the interactions between the core
player and the operating system, including file system operations, multimedia device
access, and browser interaction. Each component provides security features that
protect the application, data, and platform within its scope of operation.

@ S T A K E , I N C � W W W . A T S T A K E . C O M � E M A I L : R E S E A R C H @ A T S T A K E . C O M

B O S T O N � D E N V E R � H A M B U R G � L O N D O N � N E W Y O R K � R A L E I G H � S A N F R A N C I S C O � S E A T T L E

S E C U R E D E S I G N W I T H F L A S H P L A Y E R 2

Specific security features implemented in the Flash Player software include:

��The security sandbox to facilitate controlled access to data.

��Data container files to insulate the file system from direct access by
applications.

��The ActionScript interpreter, which allows Flash applications to interact with
the user and target platform within well-defined constraints.

��User controls that govern the use of multimedia input devices and the
downloading of player components.

��Network access constraints that limit Flash Player applications’ interactions
to specific protocols and hosts.

Flash Player Deployment Options

The Flash Player can be deployed on a target platform in two forms. The intended
deployment model is the standard installation of the Flash Player on the target
platform, and is invoked after the user has obtained the desired content. Alternatively,
a developer of Flash content can create a “projector” that bundles a Flash Player
application with a standalone Flash Player executable; when invoked on the target
machine, this executable plays the bundled application.

However, distribution of projectors becomes a less attractive option for content
development and distribution as users become increasingly wary of the dangers posed
to their computers by executable applications arriving from third parties who they
might not trust. In addition, because a projector is unable to fully implement the
complete Flash Player security model, this deployment option should be avoided in all
but tightly controlled situations.

Flash Player Security Features

This section analyzes the key Flash Player security features reviewed by @stake.

Reliance on DNS Security

Domain Name Service (DNS) is the infrastructure component of the Internet that
acts as a directory and allows mnemonic names, such as “www.macromedia.com,” to
identify computers. Several Flash Player security features depend on accurate DNS
lookups when making access control decisions. In particular, data sharing between
individual Flash Player applications relies on the accuracy of DNS to identify that the
two applications originated from the same source or that they are authorized to
access shared data.

DNS query results can be trusted within certain narrowly defined limits. These limits
include situations where:

© 2 0 0 2 @ S T A K E , I N C . A L L R I G H T S R E S E R V E D

S E C U R E D E S I G N W I T H F L A S H P L A Y E R 3

��The DNS server and any forwarders upon which it relies are trusted to
provide accurate lookups and are authoritative for every domain being
queried.

��DNS queries are not subject to eavesdropping or interception at any point on
the network.

Generally, these constraints are difficult to meet except within carefully controlled
corporate environments.

Flash Player Application Data Security

The Flash Player security sandbox permits peer Flash Player applications to share data
in the following two circumstances:

��Data sharing between two peer Flash Player applications originating from
machines within the same DNS domain. Before permitting one Flash Player
application to access data belonging to another, the Flash Player examines the
DNS domains from which each of the two applications originated. If the
domains, except for the host name, match, then each application can access
the other’s local shared objects without restriction.

��Data sharing between two peer Flash Player applications originating from
machines in different DNS domains. A Flash Player application can inform
the Flash Player that it intends to provide applications from other domains
with access to its shared objects. As in the case with peer Flash Player
applications from the same domain, the Flash Player will identify these
secondary applications based on their domain names.

The Flash Player can only enforce access restrictions to the extent that DNS provides
accurate resolutions. Therefore, in situations where DNS resolution cannot be
controlled entirely by the owner of an application, the developer must avoid placing
confidential or sensitive information in shared objects.

Client System Security

The Flash Player is designed to protect the target platform from unauthorized access
while providing certain aspects of the platform for use by Flash content. Of primary
interest are the Flash Player’s ability to limit access to the file system, media inputs,
and code execution.

File System

The Flash Player does not permit Flash Player applications to access the file system
directly; instead, it requires indirect access through methods it provides. This
encapsulation permits the Flash Player to control the precise location of all the data a
an application stores. The player stores data in files within a player-specified directory
hierarchy, using specific naming conventions that preclude the creation of arbitrary
files within the target platform’s file system. The player stores the names and
contents of local shared objects within the data files, which permit developers to use

© 2 0 0 2 @ S T A K E , I N C . A L L R I G H T S R E S E R V E D

S E C U R E D E S I G N W I T H F L A S H P L A Y E R 4

any arbitrary name and data without interfering with the normal, secure operation of
the target platform.

Media Inputs

The Flash Player introduces the ability to use camera and microphone data within a
larger application, presenting these streams to a remote server for handling within that
application. Upon the first attempt by an application from a given DNS domain to
access multimedia inputs, the player presents the user with a dialog box requesting
permission to provide camera and microphone access to that domain. The user’s
decision persists through subsequent invocations of applications and player restarts,
until the user invokes the Flash Player’s Preference dialog box to change the setting.

Code Execution

A significant concern regarding downloadable applications is their interactions with
the target operating system or machine and the security consequences to the platform.
The Flash Player provides a proprietary, scripted execution environment that is the
only way a Flash Player application can supply instructions for execution. This
environment, known as the ActionScript Interpreter, limits the interactions
applications can have with the target platform and other external entities by providing
a set of objects and methods that constrain the interactions within safe boundaries.

ActionScript programs are not native to any target platform of the Flash Player, so a
program that runs within the interpreter cannot run in the host operating system.
Furthermore, objects that an ActionScript program manipulates are neither executed
by the interpreter or the host platform, nor stored or transmitted in a form that could
eventually interact with the platform. These features work together to prevent
ActionScript programs from escaping to the host environment or otherwise
interacting with the host system in an uncontrolled manner.

Network Security

The Flash Player provides network connectivity to applications interacting with other
entities across a network. It presents network connectivity to applications as a set of
objects and methods that limit the interactions an application has. The following
sections discuss these areas in further detail.

AMF Protocol

The Action Message Format, or AMF, protocol permits Flash Player applications to
invoke remote procedures, using HTTP or HTTPS as a transport and supplying
ActionScript objects as parameters. The Flash Player restricts outbound AMF
connections to those target hosts that share domain names with the application’s
source, except for the host name. This connection limitation is effective for
applications originating from domains under the control of trusted entities, subject to
the DNS constraints described above.

Within intranets that deploy the Flash Player, all AMF listeners with sensitive or non-
public information should follow security best practices by requiring authentication

© 2 0 0 2 @ S T A K E , I N C . A L L R I G H T S R E S E R V E D

S E C U R E D E S I G N W I T H F L A S H P L A Y E R 5

of the AMF client to protect that information. Developers should protect sensitive
and confidential information transmitted across an AMF connection by specifying an
HTTPS:// (SSL) URL as the connection gateway.

XML/HTTP

The Flash Player provides an XML-over-HTTP transport for use by applications.
The Flash Player packages this capability as an ActionScript object and imposes usage
restrictions on it: a port limitation excludes connections to ports under 1023 to
prevent accesses of well-known services, and the target host must share the domain
name with the Flash Player application’s source, except for the host name. This latter
limitation is effective for applications originating from domains under the control of
trusted entities, subject to the DNS constraints described above.

Product Downloads

The Flash Player enables the applications it plays to download new player
components from Macromedia. When invoked, this download process first requests
the user’s permission to proceed, connects to a Macromedia server to obtain the
component file, then moves the downloaded component to a designated location
within the Flash Player installation. As this process relies on accurate DNS
resolution, it is subject to the limitations of the DNS infrastructure as described
above. Use of the Flash Player’s component download process should be conducted
in accordance with security best practices, which suggest exercising due caution when
obtaining executable code from remote sources.

RTMP

RTMP, a streaming protocol designed to transmit data to the Macromedia Flash
Communication Server MX, encapsulates media streams and data for transmission to
the remote server. Macromedia recommends transmitting only information that is
public and non-sensitive over RTMP. Please refer to the “Secure Design with
Macromedia Flash Communication Server MX” document for further information
about the Flash Player and the RTMP protocol.

Conclusion

The Flash Player provides a versatile platform for multimedia applications, with a
feature set that includes security-conscious functionality. Developers with a basic
understanding of the concepts represented in this document will be able to create
applications that retain the intended security properties of the Flash Player platform.
The information presented here will facilitate the introduction of the Flash Player
into controlled environments, such as corporate intranets, by providing an
understanding of the relationship and interactions among the Flash Player
application, the Flash Player itself, the target platform, and the network.

© 2 0 0 2 @ S T A K E , I N C . A L L R I G H T S R E S E R V E D

S E C U R E D E S I G N W I T H F L A S H P L A Y E R

© 2 0 0 2 @ S T A K E , I N C . A L L R I G H T S R E S E R V E D

6

About @stake, Inc.

@stake provides corporations with digital security services that secure critical
infrastructure and electronic relationships. @stake applies industry expertise and
pioneering research to design and build secure business solutions. As the first
company to develop an empirical model measuring the Return On Security
Investment (ROSI), @stake works where security and business intersect.
Headquartered in Cambridge, MA, @stake has offices in Denver, Hamburg, London,
New York, Raleigh, San Francisco, and Seattle. For more information, go to
www.atstake.com.

Reproduction guidelines: you may make copies of this document unless otherwise noted. If you quote
or reference this document, you must appropriately attribute the contents and authorship to @stake.
Opinions presented in this document reflect judgment at the time of publication and are subject to
change. While every precaution has been taken in the preparation of this document, @stake assumes
no responsibility for errors, omissions, or damages resulting from the use of the information herein.
Products or corporate names may be trademarks or registered trademarks of other companies and are
used only for the explanation and to the owner's benefit, without intent to infringe.

