Network-Monitoring Tools

It should come as no surprise that SNMP can be used to collect performance information. We have already seen simple examples in "Device Monitoring with SNMP". Using the raw statistics gathered with a tool like NET SNMP or even the stripcharts in tkined is alright if you need only a little data, but in practice you will want tools designed to deal specifically with performance data. Which tool you use will depend on what you want to do. One of your best choices from this family of tools is mrtg. (Although it is not discussed here, you also may want to look at scion. This is from Merit Networks, Inc., and will run under Windows as well as Unix.)

mrtg

mrtg (Multirouter Traffic Grapher) was originally developed by Tobias Oetiker with the support of numerous people, most notably Dave Rand. This tool uses SNMP to collect statistics from network equipment and creates web-accessible graphs of the statistics. It is designed to be run periodically to provide a picture of traffic over time. mrtg is ideally suited for identifying busy-hour traffic. All you need to do is scan the graph looking for the largest peaks. mrtg is most commonly used to graph traffic through router interfaces but can be configured for other uses. For example, since NET SNMP can be used to collect disk usage data, mrtg could be used to retrieve and graph the amount of free space on the disk drive over time for a system running snmpd. Because the graphs are web-accessible, mrtg is well suited for remote measurement. mrtg uses SNMP's GET command to collect information. With the current implementation, collection is done by a Perl module supplied as part of mrtg. No separate installation of SNMP is needed. mrtg is designed to be run regularly by cron, typically every five minutes. However, mrtg can be run as a standalone program, or the sampling interval can be changed. Configuration files, generally created with the cfgmaker utility, determine the general appearance of the web pages and what data is collected. mrtg generates graphs of traffic in GIF format and HTML pages to display these graphs. Typically, these will be made available by a web server running on the same computer as mrtg, but the files can be viewed with a web browser running on the same computer or the files can be moved to another computer for viewing. This could be helpful when debugging mrtg since the web server may considerably complicate the installation, particularly if you are not currently running a web server or are not comfortable with web server configuration. Figure 8-6 shows a typical web page generated by mrtg. In this example, you can see some basic information about the router at the top of the page and, below it, two graphs. One shows traffic for the last 24 hours and the other shows traffic for the last two weeks, along with summary statistics for each. The monthly and yearly graphs have scrolled off the page. This is the output for a single interface. Input traffic is shown in green and output traffic is shown in blue, by default, on color displays. Figure 8-6

Figure 8-6. mrtg interface report

It is possible to have mrtg generate a summary web page with a graph for each interface. Each graph is linked to the more complete traffic report such as the one shown in Figure 8-6. The indexmaker utility is used to generate this page once the configuration file has been created.

mrtg configuration file

To use mrtg, you will need a separate configuration file for each device. Each configuration file will describe all the interfaces within the device. Creating these files is the first step after installation. While a sample configuration file is supplied as part of the documentation, it is much easier to use the cfgmaker script. An SNMP community string and hostname or IP number must be supplied as parts to a compound argument:

bsd2# cfgmaker public@172.16.2.1 > mrtg.cfg


Since the script writes the configuration to standard output, you'll need to redirect your output to a file. If you want to measure traffic at multiple devices, then you simply need to create a different configuration file for each. Just give each a different (but meaningful) name. Once you have a basic configuration file, you can further edit it as you see fit. As described next, this can be an involved process. Fortunately, cfgmaker does a reasonable job. In many cases, this will provide all you need, so further editing won't be necessary. Here is the first part of a fairly typical configuration file. (You may want to compare this to the sample output shown in Figure 8-6.)

# Add a WorkDir: /some/path line to this file WorkDir: /usr/local/share/doc/apache/mrtg ###################################################################### # Description: Cisco Internetwork Operating System Software IOS (tm) 3600 Software (C3620-IO3-M), Version 12.0(7)T, RELEASE SOFTWARE (fc2) copyleft (c) 1986-1999 by cisco Systems, Inc. Compiled Wed 08-Dec-99 10:08 by phanguye # Contact: "Joe Sloan" # System Name: NLRouter # Location: "LL 214" #..................................................................... Target[C3600]: 1:public@172.16.2.1 MaxBytes[C3600]: 1250000 Title[C3600]: NLRouter (C3600): Ethernet0/0 PageTop[C3600]: <H1>Traffic Analysis for Ethernet0/0 </H1>
<TABLE>
<TR><TD>System:</TD><TD>NLRouter in "LL 214"</TD></TR>
<TR><TD>Maintainer:</TD><TD>"Joe Sloan"</TD></TR>
<TR><TD>Interface:</TD><TD>Ethernet0/0 (1)</TD></TR>
<TR><TD>IP:</TD><TD>C3600 (205.153.60.250)</TD></TR>
<TR><TD>Max Speed:</TD>
<TD>1250.0 kBytes/s (ethernetCsmacd)</TD></TR>
</TABLE> #--------------------------------------------------------------- Target[172.16.2.1.2]: 2:public@172.16.2.1 MaxBytes[172.16.2.1.2]: 1250000 Title[172.16.2.1.2]: NLRouter (No hostname defined for IP address): Ethernet0/1 PageTop[172.16.2.1.2]: <H1>Traffic Analysis for Ethernet0/1 </H1>
<TABLE>
<TR><TD>System:</TD><TD>NLRouter in "LL 214"</TD></TR>
<TR><TD>Maintainer:</TD><TD>"Joe Sloan"</TD></TR>
<TR><TD>Interface:</TD><TD>Ethernet0/1 (2)</TD></TR>
<TR><TD>IP:</TD><TD>No hostname defined for IP address (172.16.1.1)</TD></TR>
<TR><TD>Max Speed:</TD>
<TD>1250.0 kBytes/s (ethernetCsmacd)</TD></TR>
</TABLE> #---------------------------------------------------------------


As you can see from the example, the general format of a directive is Keyword[Label]: Arguments Directives always start in the first column of the configuration file. Their arguments may extend over multiple lines, provided the additional lines leave the first column blank. In the example, the argument to the first PageTop directive extends for 10 lines. In this example, I've added the second line -- specifying a directory where the working files will be stored. This is a mandatory change. It should be set to a directory that is accessible to the web server on the computer. It will contain log files, home pages, and graphs for the most recent day, week, month, and year for each interface. The interface label, explained shortly, is the first part of a filename. Filename extensions identify the function of each file. Everything else, including the files just described, is automatically generated. As you can see, cfgmaker uses SNMP to collect some basic information from the device, e.g., sysName, sysLocation, and sysContact, for inclusion in the configuration file. This information has been used both in the initial comment (lines beginning with #) and in the HTML code under the PageTop directive. As you might guess, PageTop determines what is displayed at the top of the page in Figure 8-6. cfgmaker also determines the type of interface by retrieving ifType and its maximum operating speed by retrieving ifSpeed, ethernetCsmacd and kBytes/s in this example. The interface type is used by the PageTop directive. The speed is used by both PageTop and the MaxBytes directive. The MaxBytes directive determines the maximum value that a measured variable is allowed to reach. If a larger number is retrieved, it is ignored. This is given in bytes per second, so if you think in bits per second, don't be misled. cfgmaker collects information on each interface and creates a section in the configuration file for each. Only two interfaces are shown in this fragment, but the omitted sections are quite similar. Each section will begin with the Target directive. In this example, the first interface is identified with the directive Target[C3600]: :public@172.16.2.1. The interface was identified by the initial scan by cfgmaker. The label was obtained by doing name resolution on the IP address. In this case, it came from an entry in /etc/hosts.[34] If name resolution fails, the IP and port numbers will be used as a label. The argument to Target is a combination of the port number, SNMP community string, and IP address of the interface. You should be aware that adding or removing an interface in a monitored device without updating the configuration file can lead to bogus results.
[34]In this example, a different system name and hostname are used to show where each is used. This is not recommended.
The only other directive in this example is Title, which determines the title displayed for the HTML page. These examples are quite adequate for a simple page, but mrtg provides both additional directives and additional arguments that provide a great deal of flexibility. By default, mrtg collects the SNMP objects ifInOctets and ifOutOctets for each interface. This can be changed with the Target command. Here is an example of a small test file (the recommended way to test mrtg) that is used to collect the number of unicast and nonunicast packets at an interface.

bsd2# cat test.cfg WorkDir: /usr/local/share/doc/apache/mrtg Target[Testing]: ifInUcastPkts.1&ifInNUcastPkts.1:public@172.16.2.1 MaxBytes[Testing]: 1250000 Title[Testing]: NLRouter: Ethernet0/0 PageTop[Testing]: <H1>Traffic Analysis for Ethernet0/0 </H1>
<TABLE>
<TR><TD>System:</TD><TD>NLRouter in "LL 214"</TD></TR>
<TR><TD>Maintainer:</TD><TD>"Joe Sloan"</TD></TR>
<TR><TD>Interface:</TD><TD>Ethernet0/0 (1)</TD></TR>
<TR><TD>IP:</TD><TD>C3600 (205.153.60.250)</TD></TR>
<TR><TD>Max Speed:</TD>
<TD>1250.0 kBytes/s (ethernetCsmacd)</TD></TR>
</TABLE>


mrtg knows a limited number of OIDs. These are described in the mibhelp.txt file that comes withmrtg. Fortunately, you can use dotted notation as well, so you aren't limited to objects with known identifiers. Nor do you have to worry about MIBs. You can also use an expression in the place of an identifier, e.g., the sum of two OIDs, or you can specify an external program if you wish to collect data not available through SNMP. There are a number of additional formats and options available with Target. Other keywords are available that will allow you to customize mrtg's behavior. For example, you can use the Interval directive to change the reported frequency of sampling. You'll also need to change your crontab file to match. If you don't want to use cron, you can use the RunAsDaemon directive, in conjunction with the Interval directive to set mrtg up to run as a standalone program. Interval takes an argument in minutes; for example, Interval: would sample every 10 minutes. To enable mrtg to run as a stand-alone program, the syntax is RunAsDaemon: yes. Several directives are useful for controlling the appearance of your graphs. If you don't want all four graphs, you can suppress the display of selected graphs with the Suppress directive. For example, Suppress[Testing]: my will suppress the monthly and yearly graphs. Use d and w for daily and weekly graphs. You may use whatever combination you want. One annoyance with mrtg is that it scales each graph to the largest value that has to be plotted. mrtg shouldn't be faulted for this; it is simply using what information it has. But the result can be graphs with some very unusual vertical scales and sets of graphs that you can't easily compare. This is something you'll definitely want to adjust. You can work around this problem with several of the directives mrtg provides, but the approach you choose will depend, at least in part, on the behavior of the data you are collecting. The Unscaled directive suppresses automatic scaling of data. It uses the value from MaxBytes as maximum on the vertical scale. You can edit MaxBytes if you are willing to have data go off the top of the graph. If you change this, you should use AbsMax to set the largest value that you expect to see. Other commands allow you to change the color, size, shape, and background of your graphs. You can also change the directions that graphs grow. Here is an example that changes the display of data to bits per second, has the display grow from left to right, displays only the daily and weekly graphs, and sets the vertical scale to 4000 bits per second:

Options[Testing]: growright,bits Suppress[Testing]: my MaxBytes[Testing]: 500 AbsMax[Testing]: 1250000 Unscaled[Testing]: dw


Notice that you still need to give MaxBytes and AbsMax in bytes. Many more keywords are available. Only the most common have been described here, but these should be more than enough to meet your initial needs. See the mrtg sample configuration file and documentation for others. Once you have the configuration file, use indexmaker to create a main page for all the interfaces on a device. In its simplest form, you merely give the configuration file and the destination file:

bsd2# indexmaker mrtg.cfg > /usr/local/www/data/mrtg/index.html


You may specify a router name and a regular expression that will match a subset of the interfaces if you want to limit what you are looking at. For example, if you have a switch with a large number of ports, you may want to monitor only the uplink ports. You'll probably want to run mrtg manually a couple of times. Here is an example using the configuration file test.cfg:

bsd2# mrtg test.cfg Rateup WARNING: .//rateup could not read the primary log file for testing Rateup WARNING: .//rateup The backup log file for testing was invalid as well Rateup WARNING: .//rateup Can't remove testing.old updating log file Rateup WARNING: .//rateup Can't rename testing.log to testing.old updating log f ile


The first couple of runs will generate warning messages about missing log files and the like. These should go away after a couple of runs and can be safely ignored Finally, you'll want to make an appropriate entry in your contab file. For example, this entry will run mrtg every five minutes on a FreeBSD system:

* * * * /usr/ports/net/mrtg/work/mrtg-2.8.12/r un/mrtg /usr/ports/net/mrtg/work/mrtg-2.8.12/run/mrtg.cfg > /dev/null 2>&1


This should be all on a single line. The syntax is different on some systems, such as Linux, so be sure to check your local manpages.

rrd and the Future of mrtg

The original version of mrtg had two deficiencies, a lack of both scalability and portability. Originally, mrtg was able to support only about 20 routers or switches. It used external utilities to perform SNMP queries and create GIF images -- snmpget from CMU SNMP and pnmtogif from the PBM package, respectively. These issues were addressed by MRTG-2, the second and current version of mrtg. Performance was improved when Dave Rand contributed rateup to the project. Written in C, rateup improved both graph generation and handling of the log files. The portability problem was addressed by two changes. First, Simon Leinen's Perl script for collecting SNMP is now used, eliminating the need for CMU SNMP. Second, Thomas Boutell's GD library is now used to directly generate graphics. At this point, mrtg is said to reasonably support querying 500 ports on a regular basis. As an ongoing project, the next goal is to further improve performance and flexibility. Toward this goal, Tobias Oetiker has written rrd (Round Robin Database), a program to further optimize the database and the graphing portion of mrtg. Although MRTG-3, the next version of mrtg, is not complete, rrd has been completed and is available as a standalone program. MRTG-3 will be built on top of rrd. rrd is designed to store and display time-series data. It is written in C and is available under the GNU General Public License. rrd stores data in a round-robin fashion so that older data is condensed and eventually discarded. Consequently, the size of the database stabilizes and will not continue to grow over time.

cricket

A number of frontends are available for rrd, including Jeff Allen's cricket. Allen, working at WebTV, was using mrtg but found that it really wasn't adequate to support the 9000 targets he needed to manage. Rather than wait for MRTG-3, he developed cricket. At least superficially, cricket has basically the same uses as mrtg. But cricket has been designed to be much more scalable. cricket is organized around the concept of a configuration tree. The configuration files for devices are organized in a hierarchical manner so the general device properties can be defined once at a higher level and inherited, while exceptions can be simply defined at a lower level of the hierarchy. This makes cricket much more manageable for larger organizations with large numbers of devices. Since it is designed around rrd, cricket is also much more efficient. cricket does a very nice job of organizing the pages that it displays. To access the pages, you will begin by executing the grapher.cgi script on the server. For example, if the server were at and CGI scripts were in the cgi-bin directory, you would point your browser to the URL http://172.16.2.236/cgi-bin/grapher.cgi. This will present you with a page organized around types of devices, e.g., routers, router interfaces, switches, along with descriptions of each. From this you will select the type of device you want to monitor. Depending on your choice, you may be presented with a list of monitored devices items or with another subhierarchy such as that shown in Figure 8-7. Figure 8-7

Figure 8-7. cricket router interfaces

You can quickly drill down to the traffic graph for the device of interest. Figure 8-8 shows an example of a traffic graph for a router interface on a router during a period of very low usage (but you get the idea, I hope). Figure 8-8

Figure 8-8. Traffic on a single interface

As you can see, this looks an awful lot like the graphs from mrtg. Unlike with mrtg, you have some control over which graphs are displayed from the web page. Short-Term displays both hourly and daily graphs, Long-Term displays both weekly and monthly graphs, and Hourly, Daily, and All are just what you would expect.[35]
[35]mrtg uses Daily to mean an hour-by-hour plot for 24 hours. cricket uses Hourly to mean the same thing. This shouldn't cause any problems.
Of course, you will need to configure each option for mrtg to work correctly. You will need to go through the hierarchy and identify the appropriate targets, set SNMP community strings, and add any descriptions that you want. Here is the interfaces file in the router-interfaces subdirectory of the cricket-config directory, the directory that contains the configuration tree. (This file corresponds to the output shown in Figure 8-8.)

target --default-- router = NLCisco snmp-community=public target Ethernet0_0 interface-name = Ethernet0/0 short-desc = "Gateway to Internet" target Ethernet0_1 interface-name = Ethernet0/1 short-desc = "172.16.1.0/24 subnet" target Ethernet0_2 interface-name = Ethernet0/2 short-desc = "172.16.2.0/24 subnet" target Ethernet0_3 interface-name = Ethernet0/3 short-desc = "172.16.3.0/24 subnet" target Null0 interface-name = Null0 short-desc = ""


While this may look simpler than an mrtg configuration file, you'll be dealing with a large number of these files. If you make a change to the configuration tree, you will need to recompile the configuration tree before you run cricket. As with mrtg, you will need to edit your crontab file to execute the collector script on a regular basis. On the whole, cricket is considerably more difficult to learn and to configure than mrtg. One way that cricket gains efficiency is by using CGI scripts to generate web pages only when they are needed rather than after each update. The result is that the pages are not available unless you have a web server running on the same computer that cricket is running on. Probably the most difficult part of the cricket installation is setting up your web server and the cricket directory structure so that the scripts can be executed by the web server without introducing any security holes. Setting up a web server and web security are beyond the scope of this tutorial. Unless you have such a large installation that mrtg doesn't meet your needs, my advice would be to start with mrtg. It's nice to know that cricket is out there. And if you really need it, it is a solid package worth learning. But mrtg is easier to get started with and will meet most people's needs.