

Delphi™

Migrating from
Visual Basic® to
Delphi™
An Overview for Programmers and
Developers

by Mitchell C. Kerman

Introduction
The Linux® operating system (OS) has recently enjoyed

extraordinary amounts of media coverage. It has gained almost

fanatical acceptance as an alternative to Microsoft® Windows®.

As a result, programmers and developers worldwide have been

investigating how they will develop systems for their end-users

and customers that take advantage of the many benefits of

Linux. Borland® Delphi™ does just that. Delphi has long been

recognized as being one of the top application development

tools for Windows. With Inprise’s Kylix™ Project (“Delphi for

Linux”), developers using Delphi are on the fast path to cross-

platform Windows/Linux development.

Visual Basic® (VB), the flagship development product

of Microsoft Corporation, is its most popular development plat-

form for the Windows OS. VB is a Rapid Application Develop-

ment (RAD) tool that traces its roots to the BASIC language.

Currently, over seven million developers use VB worldwide.

Delphi is also a RAD tool, and Visual Basic developers will find

it to be remarkably similar to VB. Both tools enhance program-

mer productivity, resulting in shorter application development

times. The key difference, however, is that versions of Delphi

will be available for both Windows and Linux.

What is Linux?
Table of Contents
Introduction 1

Integrated Development Environment 5

Programming Language 11

Built-in Debugger 30

Application Deployment 31

Additional References 32

Conclusions 32
Technically speaking, the name Linux only refers to the kernel,

the core part of the OS. However, most people (and this paper)

commonly use Linux in reference to the entire OS and its

Delphi™

2

packaged applications, as an alternative operating system to

Microsoft Windows or MacOS.

Linux is a freely-distributed Unix-like operating system

originally created by Linus Torvalds with the assistance of

programmers, hobbyists, and computer enthusiasts around the

world. It was originally designed in 1991 for Intel's 80386

microprocessor, but it now runs on a variety of hardware,

including Alpha, SPARC, PowerPC, and Intel's complete family

of x86 microprocessors.

Linux is a modern OS that offers the following

features:

• 32-bit architecture

• Preemptive multitasking

• Protected memory

• Multi-user support

• Rich networking support, including TCP/IP

A continually growing number of web sites and

Internet Service Providers (ISPs) rely on Linux as their server

operating system. Linux is also the development platform of

choice for many C and C++ programmers around the world.

Furthermore, Linux runs all of the applications expected of a

typical Unix server. Just to name a few, these applications

include:

• Web servers (e.g., Apache)

• Mail servers (e.g., Sendmail)

• Database servers (e.g., Oracle and Informix)

• Windows and window managers (e.g., X-Windows,

GNOME, and KDE)

• Office productivity suites (e.g., Applixware, StarOffice, and

KOffice)

Linux is distributed under the GNU General Public

License (GPL), meaning that the source code for Linux is freely

available to everyone. Anyone can modify the code, provided

that the modifications are also freely distributed with the source

code.

Making the Linux source code open to everyone (i.e.,

open source) offers several advantages:

• Flexibility. Linux is easy to customize, enabling it to

operate on a variety of platforms, from handhelds to

clusters of servers working in concert.

• Reliability. Linux has been thoroughly debugged, and each

new version of the operating system is rapidly reviewed and

tested by thousands of programmers worldwide.

• Economy. The startup cost to use Linux is extremely low

in comparison to other operating systems. There are no

licenses or associated fees. Customer support is available

from a legion of open source programmers and commercial

vendors.

Linux is truly a phenomenon of the Internet. The

Internet is the means by which Linux was given birth and

continues to grow by providing the necessary collaborative

environment required for its development. Programmers

around the world can write and share their code for

improvements and additions to Linux.

Many development tools are currently available for

Linux. However, there is a wide disparity in terms of their

features, speed, cross-platform capabilities, and cost. Several

popular Linux programming tools and tool providers are

described below:

• GNU: GCC/EGCS. These are open source

development tools that have served Linux well in the

development of the OS and environment. As open

source tools, they are freely available across the

Internet. They do hold a tremendous starting market

share, and most Linux tools have been written in

GCC/EGCS. Much like Code Warrior (below), these

tools have no RAD, Internet, database, or graphical

user interface (GUI) development capabilities. Without

these capabilities, they do not meet the application

needs of the Enterprise. Also, the development of

large-scale projects is complex and time-consuming

since these tools are C/C++ based.

Delphi™

3

• Cygnus: Code Fusion™ for Linux. Cygnus created a

Linux integrated development environment (IDE) for

the GNU tools such as GCC. Released in August

1999, Code Fusion was one of the first tools for the

Linux market. As with the GNU tools and Code

Warrior, Code Fusion's weaknesses are in the areas of

RAD, Internet, Database, and GUI capabilities.

Cygnus has a strong reputation in the open source

community and includes the latest Intel Optimizations

in its tools, but the company has little brand

recognition outside of its own user base.

• Metrowerks: Code Warrior. Code Warrior was the

first commercially available Linux development tool,

initially released in May 1999. It allows for multi-

platform development with a product line that includes

Windows, Solaris™, Linux, BeOS®, Palm®, WinCE,

and Java®, but it holds the smallest market share for

each of these OSs. Additionally, Code Warrior is not a

RAD tool, and it contains no GUI or database

capabilities.

• Microsoft. At this time, Microsoft has not announced

any plans to enter into the Linux development tools

arena. Since Microsoft uses its development tools to

promote the Windows OS, it is unlikely that Microsoft

will ever enter the Linux tools market.

• Borland/Inprise. Borland/Inprise currently offers

one Linux development tool, Jbuilder™, and will soon

have two more available, C++Builder™ and Delphi.

JBuilder is Borland’s Java development environment.

At present, it is available under Windows, Linux, and

Solaris. JBuilder is also a fully scalable database

development tool that supports Java 2. C++Builder is a

C++ development platform, and Delphi is a popular

RAD development tool. C++Builder uses the C++

programming language, whereas Delphi uses Object

Pascal. Both tools share a common IDE. This IDE is

very intuitive, and much of your knowledge of VB's

IDE directly applies to this one. Windows versions of

both tools are available now, and the Linux versions are

forthcoming. Kylix is Borland’s development effort to

port both C++Builder and Delphi to the Linux world.

Benefits of Delphi
Now that you have been introduced to the Linux OS, its

features, and the various Linux development tools, let’s turn our

attention back to VB and Delphi. Compared to VB, Delphi

offers a multitude of benefits, such as:

• Cross-platform development. As previously mentioned,

Delphi is currently available for Windows, and the Linux

version will be released very soon. The same code can be

used under both OSs, but it may require minor

modifications due to inherent OS differences.

• Superior development environment. The Delphi IDE

provides all of the functionality expected of a RAD tool and

more. The environment is intuitive and easy to use.

Furthermore, the IDE is flexible, allowing the programmer

to customize the environment to suit his needs and

preferences.

• Powerful components and controls. Similar to the VB

Toolbox, Delphi contains a Visual Component Library

(VCL) of commonly used components and controls. The

number and type of components included in this library

depend upon which edition of Delphi is being used

(Standard, Professional, or Enterprise). All library

components are written in Object Pascal. Thus, the

programmer has the ability to modify and extend this

library.

• True object-oriented programming. While Microsoft

claims that VB is object-oriented, we (as educated

programmers) know that it is really just object-based. True

object inheritance and polymorphism are unavailable in VB.

The object model in Delphi is complete, providing

encapsulation, inheritance, and polymorphism.

Delphi™

4

• Pointers and dynamic variables. VB does provide for

dynamic variables, but it does not allow explicit pointer

variables. How many times has this problem come between

you and more efficient code or cleaner data structures?

“Gee, we really need a tree structure to represent this data

properly.” While more adept VB programmers can

overcome this dilemma by using VB object variables (which

are really implicit pointers anyway), many programmers just

work around the problem at the expense of algorithm and

memory efficiency. Delphi’s Object Pascal offers dynamic

variables and explicit pointers, effectively dissolving most of

your algorithm efficiency and data structure woes.

• Promotes sound programming practices. We now come

to my pet peeve. As a textbook author and introductory

programming instructor, one of my greatest challenges is to

teach students to always declare their variables. VB gives the

programmer the option of not requiring explicit variable

declarations (similar to its predecessor, BASIC). “Please

make sure that ‘Option Explicit’ appears at the top of your

VB code,” I would tell my students. Perhaps you do not

agree with me on this point, but try to remember when you

first learned how to program. While this option proves

extremely powerful and time-saving for expert

programmers, it provides just enough rope for novice

programmers to hang themselves. Explicitly declaring

variables encourages self-commenting variable names,

improves code readability, provides greater control over

memory space requirements, and avoids confusion between

variables of the same name in different portions of the

source code. Since Object Pascal always requires explicit

variable declarations, it promotes this sound programming

practice. Additionally, Object Pascal’s syntax encourages

structured and modular programming.

• Strong typing rules. Akin to sound programming

practices, we come to a comparison of the language typing

rules. VB is a weakly-typed language. For instance, a

variable of data type Double (a double-precision floating-

point number) can be assigned to a variable of type Integer

without repercussion (or is it?) VB will automatically

convert the double-precision value to an integer value. This

automatic conversion is not without its problems: Does VB

round or truncate the floating-point portion? Do you

remember? For positive values, the answer is that VB

rounds: It rounds down to the next lowest integer for

floating-point portions less than 0.5 (essentially, truncating

the floating-point portion) and it rounds up to the next

highest integer for floating-point values greater than or

equal to 0.5. Of course, we can avoid this problem and

simultaneously improve the readability of our code by using

a data type conversion function, such as VB’s Fix or Int

functions. Unlike VB, Delphi’s Object Pascal is strongly-

typed. A double-precision value cannot be assigned to an

Integer variable without first performing the necessary data

type conversion. Thus, the problem is entirely avoided.

These and other benefits will be explored in greater detail in the

pages that follow.

Purpose of this Paper
This paper is written for programmers and developers

who are familiar with VB and would like to learn more about

Delphi. While it compares product and language features of

both packages, it is by no means a complete comparison. The

paper assumes a basic knowledge of RAD, including GUI design

concepts, component properties and methods, and event-driven

programming. Students, beginning programmers, and

experienced programmers alike will benefit from reading the

remainder of this document.

In the pages that follow, VB and Delphi are compared

and contrasted. This comparison exists at four levels: the IDE,

programming language, built-in debugger, and application

deployment. Again, rather than act as a complete reference

manual, this paper guides those familiar with VB through the

process of learning Delphi by leveraging their existing

knowledge.

Delphi™

5

Integrated Development Environment
VB developers find a comfortable familiarity with Delphi’s IDE.

Many of the menus, toolbars, and windows have a design and

purpose similar to those of VB. Delphi contains all of the tools

that are required of modern RAD environments, and it is clear

that these tools were created and organized with a great deal of

forethought and effort on the part of Delphi’s design team.

Both VB and Delphi contain windows with similar

names and functionality. For instance, both contain windows in

which you can modify control properties. Visual Basic is a

Multiple Document Interface (MDI) development environment;

all of its windows are fully contained within the main application

window. Delphi, however, is a Single Document Interface (SDI)

environment where all windows are free-floating. The following

paragraphs introduce the elements of the Delphi IDE and

compare and contrast its windows with their VB counterparts.

The default Delphi IDE consists of the following

windows:

• A menu bar

• Six toolbars:

1. Standard toolbar

2. View toolbar

3. Debug toolbar

4. Custom toolbar

5. Desktops toolbar

6. Component Palette

• Smaller windows:

1. Form window

2. Object Inspector window

3. Code Editor window

4. Other windows

Figure 1 shows the default Delphi IDE layout.

Figure 1. Delphi’s default Integrated Development Environment

Menu Bar
Like VB, Delphi contains a menu bar. The Delphi menu bar is a

typical drop-down menu. Many of the menu options can be

accessed directly through the shortcut key combinations that are

listed on the right-hand side of the drop-down menu. The menu

bar offers all of the functionality required for a developer to

create an application. The menu bar and a sample drop-down

menu appear in Figure 2.

Toolbars
Toolbars contain icons that allow quick access to common tasks.

VB contains four separate toolbars that divide and organize tasks

according to their purpose. These include the Standard, Debug,

Edit, and Form Editor toolbars. By default, VB displays only

the Standard toolbar. Delphi has six separate toolbars, all of

which are displayed by default.

Delphi™

6

Figure 2. Delphi menu bar with an activated drop-down menu

Both VB and Delphi allow you to toggle the visibility

of the various toolbars through the View menu. Alternatively,

right-clicking on the Standard toolbar in VB opens a pop-up

menu listing the available toolbars. This same action opens a

similar pop-up menu in Delphi. Additionally, both VB and

Delphi toolbars are customizable.

Standard Toolbar
The Standard toolbar (Figure 3) contains icons for common

tasks, such as opening, saving, and creating Delphi projects and

associated files.

Figure 3. Standard Toolbar

View Toolbar
The View toolbar shown in Figure 4 contains icons for creating

new forms, viewing forms and code units, and toggling between

a form and its code unit. This toolbar allows you to quickly

switch between windows in the Delphi IDE.

Figure 4. View Toolbar

Debug Toolbar
As in VB, the Debug toolbar (Figure 5) is used for interactive

testing and debugging of your programs. It provides quick

access to several Delphi debugger commands that are available

on the Run menu. Like the VB debugger, the Delphi debugger

is a design-time utility. It can only be used inside of the Delphi

development environment while you are working on the source

code.

Figure 5. Debug Toolbar

Custom Toolbar
Figure 6 shows the Custom toolbar. By default, this toolbar

contains a single button to access the Delphi online help facility.

Figure 6. Custom Toolbar

Desktops Toolbar
VB opens with all of its windows and toolbars in their previous

positions (i.e., the last positions where they were located). The

programmer does not have the ability to create several different

desktop layouts. Conversely, a programmer can customize

Delphi’s desktop settings using the Desktops toolbar shown in

Figure 7. This toolbar contains a pick list of the available

desktop layouts and allows the programmer to load and save

different layouts. A desktop layout includes the display, sizing,

docking, and placement of windows in the IDE. A selected

layout remains in effect for all projects and is used the next time

Delphi is started. Again, VB has no equivalent of this toolbar.

Figure 7. Desktops Toolbar

Delphi™

7

Component Palette
In VB, the Toolbox houses all of the ActiveX controls that are

available to the current project. The equivalent window in

Delphi is the Component Palette shown in Figure 8.

Figure 8. Component Palette

The first difference between VB’s Toolbox and

Delphi’s Component Palette is that the Component Palette is

tabbed. To alter this tab layout, right-click on the Component

Palette and select Properties from the pop-up menu. This opens

the Palette Properties window which allows you to customize

the Component Palette. By default, the VB Toolbox is not

tabbed. However, a programmer may customize the Toolbox

and add tabs to organize the controls for quick and easy

recognition, similar to Delphi’s Component Palette.

Another difference between the two windows is that

the VB Toolbox contains only the controls that are available to

or used by the current project. On the other hand, the

Component Palette always contains all of the controls.

Furthermore, when you compile a VB application, each of the

ActiveX® controls is still separate from the executable file,

whereas Delphi compiles the required controls into the

executable file.

Delphi also supports the use of ActiveX controls.

When an ActiveX control is used in an application, it is

“wrapped” in a set of code that allows is to be placed on the

Component Palette and used within the Delphi IDE.

Smaller Windows
Smaller windows in Delphi’s default IDE include the Form

window, Object Inspector window, Code Editor window, and

other windows.

Form Window
The Form window in Delphi (Figure 9) looks and acts like the

Form window in VB. The major difference is the unit of

measure. Instead of using twips like VB, Delphi uses pixels.

Figure 9. Form Window

As in VB, the grid dots on the form are used to align

and size your controls. To change any of the Form designer’s

options, select Tools|Environment Options… from the menu

bar and left-click the Preferences tab. The Form designer frame

under this tab allows you to change the options summarized

below:

• Display Grid ― Controls whether or not the grid dots

are displayed.

• Snap To Grid ― Directs the alignment of the controls.

When activated, all corners of the controls are aligned

to the grid dots.

• Show Component Captions ― For non-visual

components, displays the name of the component

underneath it on the form designer.

• Show Designer Hints ― As you are sizing or moving a

control with this option active, the size or position is

displayed as a tooltip hint.

• New Forms As Text ― Designates whether newly

created forms are saved in text or binary format.

• AutoCreate Forms ― Determines if new forms are

automatically created when the application executes.

Delphi™

8

• Grid Size X, Grid Size Y ― Determines the number of

pixels between the grid dots.

Like VB, Delphi offers several methods of placing a

control on a form. First, double-clicking the desired control on

the Component Palette places a control of the default size in the

center of the form. A second method is to left-click the control

on the Component Palette and then left-click on the form. This

places a control of the default size on the form with its top left

corner aligned to the location that you clicked. Lastly, you may

single-click the control on the Component Palette and then

click-and-drag to place this control on the form. This method

allows the programmer to directly specify the size and position

of the control.

Multiple controls of the same type can be placed on the

form by holding down the shift key while selecting the control

from the Component Palette. Once the control is selected, you

can place controls of this type on the form by using one of the

last two methods described above.

Object Inspector® Window
Figure 10 displays the Object Inspector® window. Delphi’s

Object Inspector is closely related to the Properties Window in

VB. Both display a list of the available design-time properties

for the currently selected object. By default, the Object

Inspector displays this list alphabetically. If you are more

accustomed to viewing properties by category, Delphi can

accommodate you. Simply right-click the Object Inspector

window and select Arrange|by Category from the pop-up menu.

There are four basic types of object properties in

Delphi: Simple, Enumerated, Sets, and those containing property

editors. Simple properties allow you to directly enter a property

value by using the keyboard. Enumerated properties allow you

to select from a valid list of property values. For instance, the

BorderStyle property of a form is an Enumerated property. Set

type properties are the only properties that allow you to assign

multiple values. An example Set type property is the Style

property within an object’s Font property. Possible values for

the Style property include Italics, Bold, Underline, Strikeout, or

any combination of these values. As in VB, those properties

that use Property Editors have ellipses (three dots) on their

right-hand side in the Object Inspector. Left-click the ellipses to

activate the Property Editor.

Figure 10. Object Inspector Window

The Object Inspector not only displays the available

design-time properties for an object, but it also contains a tab

listing all of the events to which the object can respond. To see

a list of all available events for an object in VB, you have to go

to the Code Editor, select the object from the Object drop-

down list, and then select the event from the Procedure drop-

down list.

With Delphi, you can have multiple controls (or even

different events) call the same event-handler. After writing the

event-handler, use the Events tab of the Object Inspector to

select this same event-handler for multiple controls (or different

events). The drop-down list in the Object Inspector shows all

event-handlers that have the same parameter list. You see that

Delphi is very flexible and powerful in regard to objects and

event-handlers. In order to do something similar in VB, one

event-handler must call the other.

Code Editor Window
The VB Code Editor opens each module in a new window. In

Delphi, the Code Editor is a single window as shown in Figure

Delphi™

9

11. This window contains a tab for each opened unit, or

module. A word of caution: All too often, you will be tempted

to close the Code Editor window after you finish editing your

code. When you close a unit in Delphi, you are also closing the

form that uses it. To close a single unit, and subsequently the

form, right-click its tab in the Code Editor and select Close Page

from the pop-up menu.

Figure 11. Code Editor Window

Delphi’s Code Editor uses a color-coding similar to the

VB editor. The colors can be customized by selecting

Tools|Editor Options… and clicking the Colors tab. Then,

select the element whose color you wish to change. Choose a

color with the left mouse button to change the foreground color

and the right mouse button to change the background color.

You can also choose to have the element displayed with a bold

or an italic font.

The keyboard shortcuts for the Code Editor include

the standard Windows navigation keys:

Key Function
Home Beginning of the line

End End of the line

Ctrl+Home Beginning of the unit

Ctrl+End End of the unit

PgUp Previous screen

PgDn Next screen

Ctrl+PgUp Top of the screen

Ctrl+PgDn Bottom of the screen

Similar to VB’s IntelliSense® technology, Delphi

contains a set of five tools known as Code Insight to aid the

developer:

1. Code Completion displays a list of available data types

when you declare a variable or a list of properties and

methods when you use an object. As you type the data

type, property, or method, Delphi performs an

incremental search of the drop-down list. By default,

this list is sorted by scope. To display it in alphabetical

order, right-click the drop-down list and select Sort by

Name from the pop-up menu. Once you have located

the item that you wish to use, press the Enter key to

select it and place it in your code.

2. Code Parameters displays a dialog of the names and types

of the parameters for a function, method, or procedure.

Thus, you can view the required arguments for a

function, method, or procedure as you enter it into

your code.

3. Code Templates is the most useful feature for your

migration from VB to Delphi. Code Templates

provides syntax templates for basic code constructs.

Pressing Ctrl-J activates this feature and displays a pop-

up menu of the available templates. Additionally, you

can type in the beginning of a statement and then press

Ctrl-J. If Delphi can resolve the statement, it will fill in

the code with the applicable template. If Delphi is

unable to resolve the statement, it displays a list of

templates that most closely match the statement. To

modify or add code templates, select the Code Insight

tab under Tools|Editor Options…

4. Tooltip Expression Evaluation displays the value of a

variable or expression as tooltip text during interactive

debugging.

5. Tooltip Symbol Insight displays declaration information

for any identifier in the Code Editor. A pop-up

window displays the kind identifier (procedure,

Delphi™

10

function, type, constant, variable, unit, etc.) and the

unit file and line number of its declaration.

Each open unit in Delphi has a separate tab in the

Code Editor. If the unit that you wish to edit is not open, select

either View|Units or View|Forms from the menu. The

View|Units option displays a list of all of available units in the

project. Similarly, View|Forms lists all available forms in the

project. Opening a form opens its corresponding unit.

Another navigation feature in Delphi’s Code Editor is

bookmarks. Delphi permits ten (10) bookmarks in the Code

Editor, numbered zero (0) through nine (9). To toggle a

bookmark, position the cursor on the desired line of code, and

then press Shift-Ctrl-number, where number is one of the number

keys zero (0) through nine (9). To jump to a numbered

bookmark, press Ctrl-number.

Other Windows
In addition to the three windows that are shown by default,

Delphi has several other useful windows available. In Figure 11,

the Code Explorer window is located in its default position,

inside the Code Editor window to the left of the active editor

page tabs. In other words, this window is docked on the left

side of the Code Editor window. The Code Explorer allows the

programmer to easily navigate through the unit files. It contains

a tree diagram that shows all the types, classes, properties,

methods, global variables, and global routines that are defined in

the code unit that is currently being edited in the Code Editor

window. It also lists the other units that are used by the unit

currently being edited. Select View|Code Explorer to open the

Code Explorer window if it is not visible.

The programmer can view the files that compose a

Delphi project in the Project Manager window. In the Project

Manager, Delphi projects may be arranged into project groups,

where a project group consists of related projects or projects

that function together as part of a multi-tiered application. In

addition, this window allows the programmer to easily navigate

among the various projects and each project’s constituent files

within a project group. Select View|Project Manager or press

Ctrl-Alt-F11 to open the Project Manager window.

To successfully complete a program, especially a large

program, there are many tasks that the programmer needs to

perform. Delphi’s To-Do List provides a built-in notepad for

the programmer to organize these tasks. This list is extremely

helpful in planning, programming, testing, and debugging large

projects that are written by a team of programmers. Select

View|To-Do List from the menu bar to open this window. You

can add, edit, and delete list items by right-clicking on the To-Do

List window.

The Alignment Palette window provides a rapid means

of aligning components on a form. Select View|Alignment

Palette from the menu bar to open this window.

The Project Browser lists the units, classes, types,

properties, methods, variables, and routines that are declared or

used in the current project. The Project Browser arranges this

information in a tree diagram. The Project Browser is opened

by selecting View|Browser or pressing Shift-Ctrl-B.

The Component List (or Components window) is

opened by selecting View|Component List from the menu bar.

This window shows an alphabetical listing of all of the

components that are available in your version of Delphi. A

component may be added to your Delphi program by selecting

the component from this window with either the keyboard or

the mouse. When using the mouse, the Component Palette

provides a more rapid means of selecting components and

placing them in your applications since it organizes the

components according to their functions. Therefore, it is

recommended to use the Component Palette in lieu of the

Components window.

The Window List allows you to quickly switch between

windows in the Delphi IDE. If you have many windows open,

this is the easiest way to locate a window and make it active.

Open the Window List by selecting View|Window List or

pressing Alt-0. Then, select the desired window from the list

and click the OK button.

Delphi™

11

Delphi contains several windows that are associated

with its built-in debugger. Discussion of these windows is

deferred until the debugging section of this paper.

Programming Language
This section discusses Delphi file types and the Object Pascal

language syntax.

Delphi File Types
Similar to VB, a Delphi application (called a project) consists of

several different file types. The three main file types are project

files, unit files, and form files. The project file (.DPR) is the

“main program;” it accesses the unit files and form files that

compose the Delphi project. Thus, the project file ties together

the files that are associated with a specific project. Typically,

there is a one-to-one relationship between unit files and form

files: Each unit file has an associated form file and vice-versa.

The form file (.DFM) lists the objects on the form and the

object property settings, and the unit file (.PAS) contains the

source code associated with the form. Recall that VB combines

the objects, property settings, and code into just the form file

(.FRM).

The important point to remember is that you must save

both the project and the forms for your Delphi application.

When you save a form, both the unit file and form file are saved

under the same name with the appropriate file extension. To

save a form, select File|Save or File|Save As… from the menu

bar, click the Save icon on the Standard toolbar, or press Ctrl-S.

To save the project file, select File|Save Project As… from the

menu bar. To rapidly save all files associated with a project,

select File|Save All from the menu or click the Save All icon on

the Standard toolbar.

Project File
Again, each application consists of a “main program” in the

project file. This file links together all units associated with the

application.

The general syntax of a project file is shown below:
program Project1;

uses
 Forms,
 Unit1 in 'Unit1.pas' {Form1};

{$R *.RES}

begin
 Application.Initialize;
 Application.CreateForm(TForm1, Form1);
 Application.Run;
end.

As in the above syntax, a project file consist of three

elements:

1. a program heading

2. an (optional) uses clause

3. a block of declarations and statements between

begin and end keywords

The program heading specifies a name for the program. The

uses clause lists the unit files used by the program. The block

(between begin and end keywords) contains declarations and

statements that are executed when the program runs. The

Delphi IDE expects to find these three elements in a single

project file.

Finally, a word of caution: It is best not to manually

alter the code generated by the IDE. This not only applies to

project files, but unit files as well. In other words, let the IDE

do the work for you. For instance, if you want to add a new

form to a project, select File|New Form or click the New Form

button on the View toolbar. Similarly, to add an event-handler

to a unit file, select the object and event in the Object Inspector

for the appropriate form, and then enter a name for the event-

handler. Delphi automatically generates the heading and block

for the event-handler.

Units
A Delphi unit consists of data types (including classes), constant

and variable declarations, and subroutines (functions and

procedures). Each unit exists in a separate unit file.

Delphi™

12

A unit file contains a heading, interface,

implementation, initialization, and finalization sections. The

initialization and finalization sections are optional. Like the

project file, a unit file must conclude with the end keyword

followed by a period. The general syntax of a unit file follows:
unit Unit1;

interface

uses {List of used units goes here}

const
 {Public constants go here}

type
 {Public types go here}

var
 {Public variables go here}

{Remainder of interface section goes here}

implementation

uses {List of used units goes here}

const
 {Private constants go here}

type
 {Private types go here}

var
 {Private variables go here}

{Remainder of implementation section goes
here}

initialization
{Initialization section goes here}

finalization
{Finalization section goes here}

end.
The interface section begins with the reserved word

interface and continues until the beginning of the

implementation section. The interface section declares

constants, data types, variables, and subroutines that are available

to clients (other units or programs) that use the unit where they

are declared. Therefore, any entity that appears in the interface

section has a public scope since a client can access it as if it were

declared in the client itself.

The implementation section begins with the reserved

word implementation and continues until the beginning of

the initialization section (if one exists) or the end of the unit.

The implementation section declares constants, data types,

variables, and subroutines that are private to the unit; that is,

these entities have a private scope and are inaccessible to clients.

The interface declaration of a procedure or function

includes only the routine’s heading. The block of the routine

follows in the implementation section. Thus, procedure and

function declarations in the interface section act like forward

declarations.

The interface and implementation sections may include

their own uses clauses which must appear immediately after the

section headings (the interface and implementation keywords).

The uses clause specifies the units that are used. The System

unit is used automatically by every Delphi application and cannot

be listed explicitly in the uses clause. The System unit

implements routines for file input and output, string handling,

floating-point operations, dynamic memory allocation, and so

on. Other standard library units, such as SysUtils, must be

included in the uses clause. In most cases, Delphi places all

necessary units in the uses clause when it generates and

maintains a source file.

Unit names must be unique within a project. Even if

the unit files are located in different directories, two units with

the same name cannot be used in a single program.

Elements of Programming
Now that you are familiar with the purpose and organization of

the Delphi file types, it is time to focus on the elements of

programming, those elements that are common to most high-

level languages.

Comments
VB has two separate comment statements, the remark statement

(Rem) and the apostrophe ('). Both of these statements are

always ignored by the VB compiler. In Object Pascal, comments

are also ignored by the compiler, except when they function as

Delphi™

13

separators (delimiting adjacent tokens) or compiler directives.

There are three ways to construct comments:

• {Text between a left brace and a right
brace constitutes a comment}

• (* Text between a left parenthesis
followed by an asterisk and an asterisk
followed by a right parenthesis
constitutes a comment *)

• // Any text between a double forward
slash and the end of the line
constitutes a comment

A comment that contains a dollar sign ($) immediately after the

opening { or (* is a compiler directive. Compiler directives are

non-executable statements within the code that alter compiler

options. For instance, {$WARNINGS OFF} tells the Object

Pascal compiler not to generate warning messages. In VB, the

Option statement signifies a compiler directive.

Statement Termination
In VB, the end of a line terminates a statement unless the line

continuation character (underscore) is used to continue the

statement on the following line. Object Pascal does not require

a line continuation character; that is, a statement may span over

several lines. The semicolon (;) is the statement separator and

terminator; it separates one statement from the next.

Identifiers
An Object Pascal identifier denotes a constant, variable, field,

data type, property, procedure, function, program, unit, library,

or package. An identifier can be of any length, but only the first

255 characters are significant. The first character of an identifier

must be either a letter or an underscore. Any number of letters,

digits, and underscores may follow the first character. Identifiers

cannot contain spaces, and reserved words cannot be used as

identifiers.

Object Pascal is case-insensitive, meaning that an

identifier named FindItem can be written in a variety of ways,

such as finditem, findItem, Finditem, and FINDITEM.

Data Types
A data type specifies the kind of data that a variable can contain.

The predefined (built-in) data types for Object Pascal are

summarized in Table 1. This table shows the valid range of

values for each data type and their memory space requirements.

Note that these data types apply to the Windows version of

Delphi; the Linux version does not contain a Variant data type,

as this data type is a Windows anomaly.
Logical and Numeric Data Types
Data Type Range Format or Size Sig. Digits
Shortint –128 to +127 signed 8-bit
Smallint –32768 to +32767 signed 16-bit
Integer –2147483648 to +2147483647 signed 32-bit
(or Longint)
Int64 –263 to +263–1 signed 64-bit
Byte 0 to 255 unsigned 8-bit
Word 0 to 65535 unsigned 16-bit
Longword 0 to 4294967295 unsigned 32-bit
(or Cardinal)
Boolean True or False 1 byte
(or ByteBool)
WordBool True or False 2 bytes
LongBool True or False 4 bytes
Real48 2.9 x 10–39 to 1.7 x 1038 6 bytes 11 to 12
Single 1.5 x 10–45 to 3.4 x 1038 4 bytes 7 to 8
Real 5.0 x 10–324 to 1.7 x 10308 8 bytes 15 to 16
(or Double)
Extended 3.6 x 10–4951 to 1.1 x 104932 10 bytes 19 to 20
Comp –263+1 to +263–1 8 bytes 19 to 20
Currency –922337203685477.5808 to 8 bytes 19 to 20
 +922337203685477.5807

Character and String Data Types
Data Type Maximum length Memory required
Char 1 ANSI character 1 byte
(or AnsiChar)
WideChar 1 Unicode character 2 bytes
ShortString 255 ANSI characters 2 to 256 bytes
String 231 ANSI characters 4 bytes to 2 gigabytes
(or AnsiString)
WideString 230 Unicode characters 4 bytes to 2 gigabytes

Table 1. Object Pascal Data Types

Constants
A constant is a named item that retains a constant value

throughout the execution of a program. It may be defined by

any mathematical or string expression. At compile time, the

compiler simply replaces the constant name with its associated

value. A numeric constant refers to a number, or numeric literal,

and a string constant is a string literal. The number 7, for

example, is a numeric constant, and ‘days per week’ is a string

constant.

Delphi™

14

In Object Pascal, the const statement is used to

define constants. Like its VB counterpart, the const statement

can declare a group of constants. The general form of this

statement appears below:
const
 constantName = Expression;
 [constantName = Expression;]
In the general syntax above, the square brackets ([…]) are used

to designate optional items that can appear any number of times.

For instance, the following code fragment defines three

constants:
const
 MINS_PER_HR = 60;
 HRS_PER_DAY = 24;
 DAYS_PER_WK = 7;
In VB, these same constants are defined using the statement:
Const MINS_PER_HR = 60, HRS_PER_DAY = 24, _
 DAYS_PER_WK = 7

Variables
A variable is a named location in memory where values are

stored. These values can be changed throughout a program’s

execution.

While VB uses the Dim (dimension) statement to

declare variables, Object Pascal uses the var statement. The

general syntax of the var statement is:
var
 variableName[, variableName]: DataType;
 [variableName[, variableName]: DataType;]
where DataType is any predefined or user-defined data type.

As an example, consider the following VB variable

declarations:
Dim dollars As Integer, cents As Integer
Dim cost As Double
Dim myMessage As String
The equivalent variable declarations in Delphi follow:
var
 dollars: Integer;
 cents: Integer;
 cost: Real;
 myMessage: String;

Operators
In VB, the equals sign (=) is an overloaded operator; it functions

as both the assignment operator and the comparison operator

for equality. However, the equals sign is only the comparison

operator for equality in Object Pascal; it always compares the

contents of the variables to determine equality. The Object

Pascal assignment operator is a combination of two characters,

the colon (:) immediately followed by the equals sign (=), or :=.

Now, consider the VB code fragment:
Dim value1 As Integer, value2 As Integer
Dim check As Boolean

value1 = 5
value2 = 7
check = (value1 = value2)
In this code, value1 and value2 are assigned two different

values, 5 and 7, respectively. The Boolean variable check is

assigned a value based upon whether value1 equals value2.

In this case, check is assigned False since the variable values are

unequal. The equivalent Object Pascal code appears below:
var
 value1: Integer;
 value2: Integer;
 check: Boolean;

begin
 value1 := 5;
 value2 := 7;
 check := (value1 = value2);
end;

Object Pascal’s arithmetic and relational operators are

presented in two tables. Table 2 shows the arithmetic operators

and Table 3 displays the relational operators. The relational

operators are the same as those of VB. The arithmetic operators

are also the same as those of VB, except for integer division,

modulo division, and exponentiation. In Object Pascal, integer

division and modulo division have built-in operators, but

exponentiation does not. To perform exponentiation, the

programmer must call a function from the math library.

Delphi™

15

Operation Operator Operand Types Result Type Example
Sign Identity + (unary) integer, real integer, real +x
Sign Negation – (unary) integer, real integer, real –x
Mutliplication * integer, real integer, real x * y
Division / integer, real real x / y
Integer Division div integer integer x div y
Modulo Division mod integer integer x mod y
Addition + integer, real integer, real x + y
Subtraction – integer, real integer, real x – y

Table 2. Object Pascal Arithmetic Operators

Relational Operator Object Pascal Mathematics
Less than < <
Less than or equal to <= ≤
Greater than > >
Greater than or equal to >= ≥
Equal to = =
Not equal to <> ≠

Table 3. Object Pascal Relational Operators

Logical operators in Object Pascal include and, or,

not, and xor. By default, Object Pascal performs short-

circuited evaluations of and and or operations. That is, it only

evaluates as much of the expression as required in order to

determine the final value. To force complete evaluation of these

expressions, select Project|Options… and then click on the

Compiler tab. Next, click on “Complete boolean eval” under

the Syntax options frame. Alternatively, put the {$B+} compiler

directive in your code.

As in VB, the only string operation in Delphi is string

concatenation (which combines strings together). VB has two

different, but interchangeable operators that perform string

concatenation, the ampersand (&) and the plus sign (+). In

Object Pascal, only the plus sign (+) is used for string

concatenation. Thus, the plus sign (+) is an overloaded operator

in Object Pascal; it is used for sign identity, addition, and string

concatenation.

While we are on the subject of strings, another

difference between VB and Object Pascal is the string delimiter

character. VB uses double quotes (") to delimit strings, but

Object Pascal uses single quotes ('). An example line of code

that uses strings and the string concatenation operator follows:
myName := 'Mitchell' + ' ' + 'Kerman';
This line of code is equivalent to:
myName := 'Mitchell Kerman';

Decision Structures
As in VB, Delphi’s Object Pascal has two types of decision

structures, if statements and case statements. These

constructs are similar in both languages.

if Statements

Nearly every high-level language has some form of the if
statement. The main difference between VB and Delphi if
statements is that Object Pascal requires multiple lines of code

under a condition to be in the form of a compound statement,

where a compound statement is delimited by begin and end

keywords. To make this simple, I always use a compound

statement, even if the compound statement only consists of one

statement. This just avoids several syntax problems in the long

run. For instance, I won’t inadvertently forget to add the begin

and end keywords when I increase the number of statements

under one of the conditions since these keywords are already in

place. I highly encourage you to adopt the same convention for

obvious reasons.

 The general form of the Object Pascal if statement

follows:
if condition1 then begin
 [statements1;]
end
else if condition2 then begin
 [statements2;]
end

.

.

.
else if conditionN then begin
 [statementsN;]
end
else begin
 [statementsX;]
end;
An if statement may have any number of else if clauses, but

may contain at most one else clause. In evaluating this if
statement, we find that it operates in the same manner as its VB

counterpart. statements1 executes when condition1 is

True; statements2 executes when condition1 is False and

condition2 is True; statementsN executes when

conditionN is True and all other preceding conditions

Delphi™

16

(condition1 through condition{N-1}) are False; finally,

statementsX executes only if all conditions (condition1

through conditionN) are False.

The following example code computes a golf handicap

for your friend based upon your difference in scores:
difference := yourAverageScore –
 myAverageScore;
if (difference >= 10) then begin
 handicap := 5;
end
else if (difference >= 7) then begin
 handicap := 3;
end
else if (difference >= 4) then begin
 handicap := 2;
end
else begin
 handicap := 0;
end;
The VB equivalent of this code follows:
difference = yourAverageScore - myAverageScore
If (difference >= 10) Then
 handicap = 5
ElseIf (difference >= 7) Then
 handicap = 3
ElseIf (difference >= 4) Then
 handicap = 2
Else
 handicap = 0
End If

There are some important syntax differences to note

here. In VB, ElseIf is a keyword, but the Object Pascal

equivalent is two separate words, else followed by if. Also,

there is no Object Pascal equivalent of VB’s End If statement; it

is not required since we use a semicolon (;) to terminate program

statements. Now, about the semicolons, notice their locations in

the Delphi syntax shown above. No semicolon directly precedes

an else statement, as this would cause a syntax error.

case Statements

Delphi’s case statement is very similar to the Select Case

statement in VB. The main difference is that the VB Select Case

statement can test strings and real numbers. Delphi’s case
statement is restricted to testing only ordinal data types,

including integers and characters. If you need to test strings or

real values, then you have to use an if statement in Delphi.

The syntax of the Object Pascal case statement is:

case selectorExpression of
 caseList1: begin
 statements1;
 end;
 caseList2: begin
 statements2;
 end;
 .
 .
 .
 caseListN: begin
 statementsN;
 end;
 else begin
 statementsX;
 end;
end;
In this syntax, selectorExpression is an expression that is

compared to each caseList expression.

selectorExpression must be an expression of an ordinal

type, where the ordinal types include Integer, Char, and Boolean.

Furthermore, each expression in a caseList must be an

ordinal expression that can be evaluated at compile time. For

instance, 12, True, 4 – 9 * 5, 'X', and Integer('Z') are valid

caseList expressions, but variables and most function calls are

not. A caseList may also be a subrange having the form

firstExpr..lastExpr, where firstExpr and lastExpr are

ordinal expressions with firstExpr ≤ lastExpr. Finally, a

caseList may be a list in the form expr1, expr2, …, exprN,

where each expr is an ordinal expression or a subrange as

described above.

A case statement may have any number of

caseLists, but at most one else clause. The execution of a

case statement parallels that of the if structure. If

selectorExpression matches any expression in a

caseList, then the statements following that caseList are

executed, and control then passes to the code following the

case statement. If selectorExpression matches an

expression in more than one caseList, only the statements

following the first matched caseList expression are executed.

If selectorExpression does not match an expression in any

caseList, then the statements following the else clause,

statementsX, are executed. Although an else clause is not

Delphi™

17

required in a case statement, using one allows your code to

handle unforeseen selectorExpression values. If

selectorExpression does not match any caseList

expression and there is no else clause, execution continues

with the code following the case statement.

The golf handicap example is converted to a case
statement in the code below. This code assumes that the

maximum difference between your score and your friend’s score

is 126 strokes.
difference := yourAverageScore –
 myAverageScore;
case difference of
 4, 5, 6: begin
 handicap := 2;
 end;
 7, 8, 9: begin
 handicap := 3;
 end;
 10..126: begin
 handicap := 5;
 end;
 else begin
 handicap := 0;
 end;
end;

For comparison purposes, the VB equivalent of this

code follows:
difference = yourAverageScore - myAverageScore
Select Case difference
 Case 4, 5, 6
 handicap = 2
 Case 7, 8, 9
 handicap = 3
 Case 10 To 126
 handicap = 5
 Case Else
 handicap = 0
End Select

Repetition Structures
Repetition structures (also known as loops) may be either

definite or indefinite. A definite repetition structure is one in

which the number of times the loop executes is known or can be

computed. An indefinite repetition structure is one in which the

number of times the loop executes is not necessarily known.

In VB, the For loop is a definite loop structure,

whereas the Do loops are indefinite loop structures. VB’s Do

loop structures include the Do While…Loop, Do…Loop Until,

Do Until…Loop, and Do…Loop While. Similarly, Object

Pascal’s for loop is a definite loop structure, and the while and

repeat loops are indefinite loop structures. The following

paragraphs discuss each of these loop structures.

for Loops

In VB, the loop control variable of a For loop may be

any numerical data type, including integers and real numbers. In

Object Pascal, the loop control variable of a for loop must be

of an ordinal data type. Additionally, no step value may be

specified in Object Pascal; a for loop always increments (or

decrements, depending upon the syntax) to the next ordinal

value.

The following VB code uses an incrementing For loop

to compute the sum of the integers from 1 to 100:
Dim counter As Integer, sum As Integer

sum = 0
For counter = 1 To 100
 sum = sum + counter
Next counter

The general syntax of an incrementing for loop in

Object Pascal follows:
for counter := start to finish do begin
 [statements;]
end;
So, translating the above VB code into Object Pascal syntax, we

get:
var
 counter: Integer;
 sum: Integer;

begin
 sum := 0;
 for counter := 1 to 100 do begin
 sum := sum + counter;
 end;
end;

We can just as easily compute the sum of the integers

from 1 to 100 using a decrementing For loop as opposed to an

incrementing one. The necessary VB code follows:
Dim counter As Integer, sum As Integer

sum = 0
For counter = 100 To 1 Step -1

Delphi™

18

 sum = sum + counter
Next counter

The general syntax of a decrementing for loop in Object

Pascal is:
for counter := start downto finish do begin
 [statements;]
end;
Rewriting our decrementing loop structure in Object Pascal, we

get:
var
 counter: Integer;
 sum: Integer;

begin
 sum := 0;
 for counter := 100 downto 1 do begin
 sum := sum + counter;
 end;
end;

while and repeat Loops

Delphi’s while and repeat loops are indefinite loop

structures. The while loop is the equivalent of VB’s Do

While…Loop, and the repeat loop is equivalent to VB’s

Do…Loop Until. Note that there is no Delphi equivalent for

VB’s Do Until…Loop and Do…Loop While structures, but

these structures may be easily converted to one of the other

forms by negating the logical condition.

The while loop has the following general syntax:
while condition do begin
 [statements;]
end;
The while loop executes the body of the loop as long as

condition evaluates to True. This type of loop is a top tested

loop; if condition evaluates to False before the first loop

execution, then the body of the loop never executes.

The following code sums the integers from 1 to 100

using a while loop:
sum := 0;
count := 1;
while (count <= 100) do begin
 sum := sum + count;
 count := count + 1;
end;
The VB equivalent of this code is:
sum = 0

count = 1
Do While (count <= 100)
 sum = sum + count
 count = count + 1
Loop

The repeat loop has the following syntax:
repeat
 [statements;]
until condition;
The repeat loop executes a block of code until condition

becomes True. This is a bottom tested loop; the body of the

repeat loop is guaranteed to execute at least once. Notice that

no begin and end keywords are needed for this loop structure;

the body of the loop is delimited by the repeat and until
keywords.

The following code sums the integers from 1 to 100

using a repeat loop:
sum := 0;
count := 1;
repeat
 sum := sum + count;
 count := count + 1;
until (count > 100);
Again, the VB equivalent of this code is:
sum = 0
count = 1
Do
 sum = sum + count
 count = count + 1
Loop Until (count > 100)

break and continue Statements

VB allows a program to unconditionally exit out of a loop

structure through the use of either the Exit Do or Exit For

statements. Both of these statements transfer control to the

statement following the loop structure. To accomplish this same

task in Delphi, use the break statement. Delphi has another

statement that is not available in VB, the continue statement.

This statement transfers control to the beginning of the loop,

skipping the remainder of the loop body.

Subprograms
Like most other high-level languages, Object Pascal has two

different types of subprograms: Procedures and Functions.

Delphi™

19

Procedures and functions that are not built-in to Object Pascal

are called user-defined because the programmer (the user of the

compiler) must define them. A procedure in Delphi is

analogous to a Sub procedure in VB. Similarly, a function in

Delphi operates in the same manner as a VB Function.

In VB, event-handlers are actually Sub procedures.

Similarly, event-handlers in Delphi are procedures that are

automatically called when an event occurs on its associated

object. For instance, the following VB event-handler finds and

displays the square root of a user-entered value:
Private Sub cmdComputeSqrRt_Click()
Dim value As Double

 value = Sqr(Val(txtInputNumber.Text))
 picOutput.Print "The square root of " & _
 txtInputNumber.Text & _
 " is " & CStr(value)
End Sub
This same event-handler is written in Delphi as follows:
procedure TfrmSquareRoot.SquareRoot(Sender:
TObject);

var
 value: Real;
 code: Integer;
 result: String;

begin
 Val(edtInputNumber.Text, value, code);
 value := Sqrt(value);
 Str(value, result);
 memOutput.Lines.Add('The square root of ' +
 edtInputNumber.Text +
 ' is ' + result);
end;
The user interface for the Delphi code consists of the form

(frmSquareRoot) and four components on the form: a label

(lblInputNumber), an edit box (edtInputNumber), a button

(btnComputeSqrRt), and a memo box (memOutput). This

code simply computes the square root of a number that the user

enters in edtInputNumber and displays the result in

memOutput. Furthermore, this code is associated with the

OnClick event of the btnComputeSqrRt button. In other

words, when the mouse pointer is on the btnComputeSqrRt
button and the left mouse button is clicked, this code executes.

Procedures
The general form for defining an Object Pascal procedure is:
procedure ProcedureName(param1: Type1;
 param2: Type2; ...);

[localDeclarations;]

begin
 [statements;]
end;

A procedure is invoked by stating the procedure name

along with any required arguments. The general syntax of a

procedure call follows:

ProcedureName(argument1, argument2, ...);
As an example, a procedure called Adder is created to

sum two numbers:
{Add num1 and num2 and store the result in
sum}
procedure Adder(num1: Real; num2: Real;
 var sum: Real);

begin
 sum := num1 + num2;
end;
num1, num2, and sum are the parameters of the Adder
procedure. Parameters are merely placeholders for the

information passed to a subprogram when it is invoked. The

parameter list specified in the Adder procedure contains three

elements, thereby informing the Delphi compiler that the Adder
procedure requires three real numbers to be passed to it. Note

that the var keyword precedes the sum parameter. We’ll talk

more about this later.

A simple test driver for the Adder procedure follows.

When the user clicks the btnAdd button, the AddNumbers
event-handler is invoked. This event-handler adds the numbers

in edit boxes edtNum1 and edtNum2 by calling the Adder
procedure and then stores the result in edtResult.
{Add two user-entered numbers}
procedure
TfrmAdderProcedure.AddNumbers(Sender:
TObject);

var
 firstNum: Real;
 secondNum: Real;
 result: Real;
 code: Integer;

Delphi™

20

begin
 Val(edtNum1.Text, firstNum, code);
 Val(edtNum2.Text, secondNum, code);

 Adder(firstNum, secondNum, result);

 edtResult.Text := Format('%15.5f',
 [result]);
end;

The variables firstNum, secondNum, and result
are the arguments of the Adder procedure; these variables

contain the values that are passed to the procedure. Note that

an argument can be any expression that is of the same type as its

corresponding parameter.

Functions
A function may take any number of arguments, but it always

returns a single value to the calling routine. A procedure, on the

other hand, does not automatically return a value. The general

rule is to use a function if you need to return exactly one value to

the calling routine. So, our Adder procedure is better written as

a function:
{Return the sum of num1 and num2}
function Adder(num1: Real; num2: Real): Real;

begin
 Adder := num1 + num2;
end;
A test driver for the Adder function appears below:
{Add two user-entered numbers}
procedure TfrmAdderFunction.AddNumbers(Sender:
TObject);

var
 firstNum: Real;
 secondNum: Real;
 result: Real;
 code: Integer;

begin
 Val(edtNum1.Text, firstNum, code);
 Val(edtNum2.Text, secondNum, code);

 result := Adder(firstNum, secondNum);

 edtResult.Text := Format('%15.5f',
 [result]);
end;

From this example, we see the general form of a user-

defined function:

function FunctionName(param1: Type1; ...):
 FunctionType;

[localDeclarations;]

begin
 [statements;]
 FunctionName := ReturnValue;
end;
Notice that a function is defined with a specific data type

(FunctionType); this is the data type of the value that the

function returns to the calling routine. To return a value to the

calling routine, the return value (ReturnValue) must be

assigned to the function name (FunctionName) somewhere

within the function’s code block, as shown in the line preceding

the end keyword. Alternatively, the return value can be assigned

to the parameter Result, an implicit parameter of every Object

Pascal function. Result and FunctionName refer to the same

value.

Similar to a procedure call, a function is invoked simply

by writing the function name along with any required arguments.

Unlike a procedure call, however, a function call returns a single

value, and your program should do something with this value

(store it in a variable, display it, etc.). The general form of a

function invocation with the returned value assigned to a

variable follows:
variableName := FunctionName(argument1,
 argument2, ...);

Parameter Passing
An argument is a piece of information passed to a subprogram.

A parameter is a placeholder for the information passed to a

subprogram when it is invoked. Each argument has a

corresponding parameter. With regard to arguments and

parameters, there are several important points that apply to most

high-level languages, including Object Pascal:

1. The number of arguments must equal the number of

parameters.

2. Order is important. The first argument corresponds to

the first parameter, the second argument to the second

parameter, and so on.

Delphi™

21

3. The data type of each argument must match the data

type of its corresponding parameter.

4. Names are not important. The name of an argument

does not have to correspond to the name of its

parameter.

5. Recognize the manner in which data is passed.

In Object Pascal, parameters that have the same data

type and are passed in the same manner may be combined in the

parameter list of a subprogram. For instance, we can rewrite the

Adder function as follows:
{Return the sum of num1 and num2}
function Adder(num1, num2: Real): Real;

begin
 Adder := num1 + num2;
end;
When grouping parameters in the parameter list of a

subprogram, make sure that you maintain the correct order.

Object Pascal, like VB, can pass parameters either by

reference or by value. Passing a parameter by reference actually

passes the memory location (address) of the argument to the

subprogram instead of the argument’s value. This allows the

subprogram to access the actual variable. As a result, the

variable’s value can be changed by the subprogram. Passing a

parameter by value, on the other hand, passes only the value of

the argument to the subprogram. The subprogram accesses a

copy of the variable, and the variable's actual value cannot be

changed by the subprogram. Passing by value is the default

method of parameter passing in Object Pascal; unless otherwise

specified, Object Pascal passes parameters by value. To pass a

parameter by reference, the parameter must be preceded by the

var keyword in the subprogram heading. In VB, however, the

default method of parameter passing is by reference, and the

programmer must specify those parameters to be passed by

value by preceding them with the ByVal keyword in the

subprogram heading.

VB does not have the ability to pass parameters as

constants, but Object Pascal does. This method of parameter

passing uses the least amount of resources. When a parameter is

passed as a constant, the subprogram is not allowed to alter its

value. Any attempt to do so results in a compiler error. To pass

a parameter as a constant, precede the parameter name with the

const keyword in the subprogram heading.

Data Structures
Object Pascal contains a variety of built-in data types for storing

data structures. Additionally, a programmer can define his own

data types (i.e., create user-defined data types).

Arrays
An array is a set of sequentially indexed elements of the same

intrinsic data type. In Object Pascal, an array variable is declared

using the array of keywords. To declare a static array, use the

syntax:
var
 arrayVariable: array[indexType1, ...,
 indexTypeN] of BaseType;
arrayVariable is any valid variable name, and BaseType is

the data type of each element in the array. Each indexType

represents a separate index of the array and must be an ordinal

data type. These are normally integer subranges.

To declare a dynamic array, use the array of
statement without specifying indices. For instance, to declare a

one-dimensional dynamic array, use the syntax:
var
 dynamicArrayVariable: array of BaseType;
Then, use the SetLength procedure to allocate memory for the

dynamic array and set its size:
SetLength(dynamicArrayVariable, length);

Each element of an array acts as a separate variable that

can be accessed using its unique index values. To access a

specific array element, use either:

arrayName[indexValue1, …, indexValueN]
or

arrayName[indexValue1] … [indexValueN]
For instance, the following statement assigns the value 7 to the

4th element of myArray:

Delphi™

22

myArray[4] := 7;

Short Strings
A short string is a string whose length does not exceed 255

characters. To dimension a short string, use the following

syntax:
var
 stringName: String[n];
where n is the length of the short string in characters. Note that

the variable stringName occupies n+1 bytes of memory (from

0 to n), where bytes 1 through n contain the characters in the

string, the 0th byte contains the size of the string, and n is less

than or equal to 255. The ShortString data type is equivalent

to String[255].

In Object Pascal, any string is just an array of

characters. To access a particular character within a string

variable, use the syntax stringName[i], where i is the index

of the character within the string (i.e., you want to access the ith

character of the string), and the first character in a string has an

index value of 1. Note that stringName[i] is of the Char

(character) data type.

Enumerated Types
An enumerated type is an ordered set of values defined

by the programmer. The values have no inherent meaning, but

their ordinality follows the sequence in which they are listed. In

Object Pascal, the type keyword allows the programmer to

create user-defined data types. To declare an enumerated type,

use the syntax:
type
 TypeName = (value1, …, valueN);
where TypeName and value1 through valueN are valid

identifiers. Consider the following example:
type
 Days = (Sunday, Monday, Tuesday, Wednesday,
 Thursday, Friday, Saturday);
This code defines an enumerated type named Days whose

possible values include the days of the week.

Sets
A set consists of a group of values of the same ordinal data type.

The values have no inherent order, and it is not meaningful for a

value to be included more than once within a set.

A set is defined using the set of keywords. The

syntax is:
type
 SetName = set of BaseType;
SetName is the name of the set and must be a valid identifier.

The possible values of SetName include all subsets of

BaseType, including the empty set (denoted by [] in Object

Pascal). Object Pascal restricts the size of BaseType to no

more than 256 possible values.

Sets are usually defined using subranges, denoted by

two periods (..). A set constructor consists of a list of comma-

separated values or subranges within square brackets. Consider

the following code fragment:
type
 LowercaseLetters = 'a'..'z';
 LowercaseSet = set of LowercaseLetters;

var
 myLetters: LowercaseSet;

begin
 myLetters := ['a'..'c', 'm', 'n', 'x'..'z'];
 .
 .
 .
end;
This code creates the LowercaseSet data type and the

myLetters variable of this data type. The code block assigns

myLetters the set consisting of the lowercase letters a, b, c, m,

n, x, y, and z.

Records
As in VB, a record type declaration must specify a record type

name as well as a name and data type for each field of the

record. The Object Pascal syntax of a record type declaration

follows:
type
 RecordTypeName = record
 fieldList1: DataType1;
 fieldList2: DataType2;
 .

Delphi™

23

 .
 .
 fieldListN: DataTypeN;
 end;

Object Pascal, like VB, uses the dot-separator to access

the fields of a record. Use the recVarName.fieldName
format to access the fieldName field of record variable

recVarName.

Pointers
A pointer is a variable that "points" to the memory

location of another variable. So, a pointer is an indirect variable

reference. VB does not allow explicit pointer variables, but

Object Pascal does. In Object Pascal, the caret symbol (^) is

used to both denote a pointer and dereference a pointer. The

following syntax declares a pointer type:
type
 PointerTypeName = ^DataType;
For instance, to declare a pointer type named IntPointer that

points to an integer value, use the following code:
type
 IntPointer = ^Integer;
A variable of type IntPointer contains the memory address of

a variable that contains an integer value.

When the caret appears after a pointer variable, it

dereferences the pointer variable and returns the value stored in

the address contained by the pointer. The syntax

pointerVariable^ dereferences pointerVariable. For

the variable ptr of type IntPointer, for instance, ptr^
returns an integer value or nil. nil is a reserved word and

special constant that can be assigned to any pointer variable to

reference "nothing," similar to VB's reserved word Nothing for

objects.

The New and Dispose procedures create and destroy

pointer variables, respectively. New allocates memory for a new

dynamic variable and points the associated pointer variable to it.

When an application finishes using a pointer, it should release

the memory allocated for it using the Dispose procedure. The

syntax follows:
New(pointerVariable);

Dispose(pointerVariable);
The value of pointerVariable is undefined after a call to the

Dispose procedure.

File Input and Output
VB provides two different file types for file input and output

(file I/O), sequential files and random-access files. Text files are

the Delphi equivalent of VB sequential files, and binary files

serve the same purpose as random-access files.

Text Files
To access a text file in Object Pascal, we must first create a

variable capable of referencing a text file. Declaring a variable of

the TextFile data type creates such a file reference variable. A

file reference variable contains a file pointer. A file pointer is

similar to the cursor in a text editor: A cursor indicates the

position within a file in a text editor, and the file pointer

indicates the position in an open file. For an input file, the file

pointer indicates the next data item to be read from the file. For

an output file, the file pointer indicates the position of the next

data item written to the file.

Next, we must associate the file reference variable with

a data file using the AssignFile procedure. The syntax

follows:

AssignFile(fileRef, fileName);
fileRef is a file reference variable. fileName is a string

expression containing any valid Windows file name and can

specify the path of the file, where the path indicates the disk

drive and subdirectory where the file resides.

Finally, before we can access a data file, it must be

opened. A text file can be opened for either input or output, but

not both simultaneously. The Reset procedure opens or

reopens a text file for input, and the Rewrite and Append
procedures open or reopen a text file for output. The syntax for

these procedures follows:
Reset(fileRef);
Rewrite(fileRef);
Append(fileRef);

Delphi™

24

As before, fileRef is the file reference variable. Reset opens

the existing data file whose name is associated with fileRef

and sets the file pointer to the beginning of the file. If the file is

already open, it is first closed and then reopened. A “file not

found” run-time error results if no data file of the given name

exists.

The Rewrite procedure creates a new data file whose

name is associated with fileRef and sets the file pointer to the

beginning of the file. If a data file of the same name already

exists, it is deleted and a new, empty file is created in its place. If

the file is already open, it is first closed and then re-created. In

summary, the Rewrite procedure either creates a new file or

overwrites an existing one.

To add data to the end of a file, use the Append
procedure. Append opens the existing text file whose name is

associated with fileRef and positions the file pointer at the

end of the file. If the file is already open, it is first closed and

then reopened. If no data file of the given name exists, a “file

not found” run-time error results.

Once a Reset statement opens a text file for input,

data can be read from the file using the Read statement:
Read(fileRef, variable);
This statement reads the next piece of data indicated by the file

pointer from the input file associated with fileRef, stores this

data in variable, and then moves the file pointer to the next

character in the input file. The data type of variable should

match the type of data that is being read from the input file. If

the data file consists of integers, for example, the data should be

read into Integer variables. Whitespace characters (spaces and

tabs) delimit numerical data in text files.

Multiple variables can be read using one Read
statement. So, the general syntax of the Read statement is:
Read(fileRef, variable1 [, variable2, …]);

While the Read statement reads data item by item from

a text file, the Readln statement reads only a specified number

of data items per line. The syntax to read one data item into a

variable follows:

Readln(fileRef, variable);
This statement reads the next piece of data indicated by the file

pointer from the input file associated with fileRef, stores this

data in variable, and then moves the file pointer to the

beginning of the next line of the input file.

The general syntax of the Readln statement is:
Readln(fileRef, variable1 [, variable2, …]);

When a file is opened for output with the Rewrite or

Append statement, data may be written to the file using the

Write procedure. The general syntax appears below:
Write(fileRef
 [, expression[:minWidth[:decPlaces]]]);
As before, fileRef is the file reference variable. expression

is an expression of any simple or string data type, whereas

minWidth and decPlaces are integer expressions. The

optional minWidth parameter specifies the minimum number

of characters in the output of expression. If the length of

expression is less than minWidth, the Write procedure pads

the left side of the output with blank spaces. All characters in

expression are output when its length exceeds minWidth. For a

real-type expression, the optional decPlaces parameter

specifies the number of digits following the decimal point. Any

number of expressions may be output with a single Write
statement (including no expressions) by separating the

expressions with commas. For example,

Write(myFile, 10:5, 10.47589:8:2);
outputs the following text to the file associated with myFile:
 10 10.48

The Writeln statement operates the same way as

Write, except that it outputs a carriage return and line feed

combination (<CR><LF>) after all of its expressions are

output. For instance,
Write(myFile, 'Hello ');
Write(myFile, 'and Good-bye');
Writeln(myFile); {Skip to next line}
Writeln(myFile, 'Hello ');
Writeln(myFile, 'and Good-bye');
outputs the following text:
Hello and Good-bye
Hello

Delphi™

25

and Good-bye
As with Read and Readln, Write statements can be

combined but Writeln statements cannot. Thus, we can

rewrite the above example as follows:
Write(myFile, 'Hello ', 'and Good-bye');
Writeln(myFile); {Skip to next line}
Writeln(myFile, 'Hello ');
Writeln(myFile, 'and Good-bye');

Finally, when a program is finished working with a file,

the file should be closed. The CloseFile statement ends the

association between a file reference variable and a data file and

returns these resources to the system. For an output file, the

CloseFile statement also writes the end-of-file character

before it closes the file. The syntax of the CloseFile
statement follows:
CloseFile(fileRef);

You should be aware of two extremely important

functions for working with text files: the Eof and Eoln
functions. As in VB, the Eof (end-of-file) function returns a

Boolean value that indicates whether the end of an input file is

reached. Eof(fileRef) is True when the file pointer is

beyond the last character of the file associated with fileRef.

This function is useful in an indefinite loop structure to read

data from an input file until the end-of-file is reached. The

Eoln (end-of-line) function returns a Boolean value that

indicates whether the file pointer is at the end of the current line.

For an input file associated with fileRef, Eoln(fileRef) is

True when the file pointer is at the end of the current line or

Eof(fileRef) is True. The Eoln function is also useful in an

indefinite loop structure for processing an input file character by

character. VB does not contain a built-in function similar to

Eoln.

Binary Files
Unlike text files, binary files can access data in any

order; data can be read from or written to any location in the

file. Thus, binary files are also known as random-access files.

Furthermore, a binary file accesses an entire data structure at a

time. For that reason, binary files present a better and faster

method of storing and retrieving information contained within a

known data structure.

While text files are stored in ASCII format, binary files

are not. That is, if a binary file were to be read as a text file, not

all of the characters in the file would be meaningful. To

correctly access a binary file, a program must know the exact

data structure contained in the file.

Object Pascal has two kinds of binary files, typed files

and untyped files. Our discussion concentrates only on typed

files, the most common of the two kinds. A typed file is an

ordered file of elements of the same data type. You may notice

the strong similarity in the definitions of an array and a typed

file. Essentially, you can think of a typed file as an array in file

form. As you will soon see, instead of using an array index to

access a particular piece of data, you use a record number.

To define a typed file data type, use the file of syntax shown

below:
type
 FileTypeName = file of DataType;
where FileTypeName is any valid identifier and DataType is a

fixed-size data type. Since DataType is of a fixed size, both

implicit and explicit pointer types are not allowed. In other

words, a typed file cannot contain dynamic arrays, long strings,

classes, objects, pointers, variants, other files, or structured types

that contain any of these.

As an example, consider the following code fragment:
type
 StudentRec = record
 lastName: String[30];
 firstName: String[20];
 ID: String[12];
 GPA: Real;
 crdtHrs: Real;
 end;
 StudentDB = file of StudentRec;

var
 studentFile: StudentDB;
This code fragment declares the StudentDB data type, a typed

file of StudentRec records. studentFile is a typed file

variable of type StudentDB whose associated file contains the

Delphi™

26

names, ID numbers, grade point averages, and cumulative credit

hours for the students at a particular school.

As with text files, the AssignFile procedure

associates a file variable with an external binary file. The Reset
and Rewrite procedures also work the same for binary files as

they do for text files. By default, a binary file is capable of both

input and output operations regardless of which of these two

procedures is used. For a text file, recall that Reset accesses the

file as read-only (for input) and Rewrite sets it to write-only

(for output). Both procedures move the file pointer to the

beginning of the file. The Append procedure is used exclusively

for text files; it is not available for use with binary files.

The value of the global variable FileMode determines

the access mode used when a binary file is opened using the

Reset procedure. Valid values of FileMode are 0 for read-only

access, 1 for write-only access, and 2 for read/write access. The

default FileMode is 2. Assigning another value to FileMode
causes all subsequent Reset calls to use that mode.

The Read procedure reads a data element from a

binary file into a variable of a compatible data type. Similarly,

the Write procedure writes the contents of a variable to a

binary file of a compatible data type. Both operations (read and

write) occur in the current location of the file pointer. After

execution, both Read and Write automatically increment the

file pointer to the next data element in the binary file. As with

text files, multiple Read statements and multiple Write
statements can be combined. So, the general syntax of the Read
and Write procedures appears below:
Read(fileRef, dataVar [, dataVar2, …]);
Write(fileRef, dataVar [, dataVar2, …]);

Since binary files are not organized into lines (of text), a

syntax error results from attempting to use the Readln or

Writeln procedures. In short, Readln and Writeln are used

exclusively for text files. Similarly, the Eof function works with

binary files, but Eoln does not.

The Seek procedure moves the file pointer in a binary

file to a specified record or data element. The syntax is:
Seek(fileRef, recNum);

fileRef is a binary file variable. recNum is a long integer

representing the record number (or element number) in the file,

where the first data element has a recNum of 0. The FileSize
function returns the number of records (or elements) in a

specified binary file. For the binary file corresponding to file

variable fileRef, the values of recNum range from 0 to

FileSize(fileRef)–1. To move the file pointer to the end

of the file, use a statement of the form:

Seek(fileRef, FileSize(fileRef));
Performing a Write procedure immediately following

the above statement expands the binary file by one data element.

The Truncate procedure deletes all data elements in the binary

file at and after the current position of the file pointer; the

current file position becomes the end-of-file. When all file

operations are complete, the CloseFile procedure is used to

terminate the association between the binary file variable and

external file.

As an example, the following code unit implements an

address book program using records and binary file I/O. This

program stores data in a binary file named Address.dat located in

the home directory of drive C (C:\). Figure 12 displays the user

interface for this program.

{---
Address Book Program
---}
unit Address;

interface

uses
 Windows, Messages, SysUtils, Classes,
 Graphics, Controls, Forms, Dialogs,
 StdCtrls;

type
 TfrmAddressBook = class(TForm)
 edtFirstName: TEdit;
 edtLastName: TEdit;
 edtAddress: TEdit;
 edtCity: TEdit;
 edtState: TEdit;
 edtZip: TEdit;
 edtPhoneNumber: TEdit;
 lblFirstName: TLabel;
 lblLastName: TLabel;

Delphi™

27

 lblAddress: TLabel;
 lblCity: TLabel;
 lblState: TLabel;
 lblZip: TLabel;
 lblPhoneNumber: TLabel;
 btnAdd: TButton;
 btnClear: TButton;
 btnRemove: TButton;
 btnFind: TButton;
 procedure AddCard(Sender: TObject);
 procedure Initialize(Sender: TObject);
 procedure ClearForm(Sender: TObject);
 procedure Terminate(Sender: TObject;
 var Action: TCloseAction);
 procedure RemoveCard(Sender: TObject);
 procedure FindCard(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;
 AddressCard = record
 firstName: String[20];
 {First Name}
 lastName: String[20];
 {Last Name}
 address: String[30];
 {Street Address}
 city: String[20];
 {City}
 state: String[20];
 {State}
 zipCode: String[15];
 {Zip Code}
 phoneNumber: String[20];
 {Telephone Number}
 end;

{
GLOBAL VARIABLES
These global variables make the coding of this
Program sufficiently easier.
}
var
 frmAddressBook: TfrmAddressBook;
 dataFile: File of AddressCard;

implementation

{$R *.DFM}

{Return the record number of the address card
that matches the first and last names. The
search is not case sensitive. If a matching
address card is not found, Find returns -1.}
function Find(first, last: String): Integer;

var
 addrCard: AddressCard;
 findCard: AddressCard;
 found: Boolean;

begin
 Reset(dataFile);
 found := False;
 findCard.firstName :=
 Trim(UpperCase(first));
 findCard.lastName := Trim(UpperCase(last));
 while not(Eof(datafile) or found) do begin
 Read(dataFile, addrCard);
 found := (UpperCase(addrCard.firstName) =
 findCard.firstName) and
 (UpperCase(addrCard.lastName) =
 findCard.lastName);
 end;
 if found then begin
 Find := FilePos(dataFile) - 1;
 end
 else begin
 Find := -1;
 end;
end;

{Add the address card to the database}
procedure TfrmAddressBook.AddCard(Sender:
TObject);

var
 addrCard: AddressCard;

begin
 with addrCard do begin
 firstName := Trim(edtFirstName.Text);
 lastName := Trim(edtLastName.Text);
 address := Trim(edtAddress.Text);
 city := Trim(edtCity.Text);
 state := Trim(edtState.Text);
 zipCode := Trim(edtZip.Text);
 phoneNumber := Trim(edtPhoneNumber.Text);
 end;
 Seek(dataFile, FileSize(dataFile));
 Write(dataFile, addrCard);
 Application.MessageBox(
 PChar('Address card added!'),
 'ADD', MB_OK);
 ClearForm(Sender);
end;

{Remove the address card from the database}
procedure TfrmAddressBook.RemoveCard(Sender:
TObject);

var
 addrCard: AddressCard;
 pos: Integer;
 recNum: Integer;

begin
 recNum := Find(edtFirstName.Text,
 edtLastName.Text);
 if (recNum >= 0) then begin

Delphi™

28

 {Display the address card}
 Seek(dataFile, recNum);
 Read(dataFile, addrCard);
 edtFirstName.Text := addrCard.firstName;
 edtLastName.Text := addrCard.lastName;
 edtAddress.Text := addrCard.address;
 edtCity.Text := addrCard.city;
 edtState.Text := addrCard.state;
 edtZip.Text := addrCard.zipCode;
 edtPhoneNumber.Text :=
 addrCard.phoneNumber;

 {Remove the address card from the
 database}
 for pos := recNum to (FileSize(dataFile) -
 2) do begin
 Seek(dataFile, pos + 1);
 Read(dataFile, addrCard);
 Seek(dataFile, pos);
 Write(dataFile, addrCard);
 end;
 Seek(dataFile, FileSize(dataFile) - 1);
 Truncate(dataFile);

 Application.MessageBox(
 PChar('Address card removed!'),
 'REMOVE', MB_OK);
 end
 else begin
 Application.MessageBox(
 PChar('Address card NOT found!'),
 'REMOVE', MB_OK);
 end;
end;

{Find and display the address card that
matches the first and last names}
procedure TfrmAddressBook.FindCard(Sender:
TObject);

var
 addrCard: AddressCard;
 recNum: Integer;

begin
 recNum := Find(edtFirstName.Text,
 edtLastName.Text);
 if (recNum >= 0) then begin
 Seek(dataFile, recNum);
 Read(dataFile, addrCard);
 edtFirstName.Text := addrCard.firstName;
 edtLastName.Text := addrCard.lastName;
 edtAddress.Text := addrCard.address;
 edtCity.Text := addrCard.city;
 edtState.Text := addrCard.state;
 edtZip.Text := addrCard.zipCode;
 edtPhoneNumber.Text :=
 addrCard.phoneNumber;
 end
 else begin
 Application.MessageBox(

 PChar('Address card NOT found!'),
 'FIND', MB_OK);
 end;
end;

{Initialize the program by opening the Address
Book database -- File Name: c:\Address.dat}
procedure TfrmAddressBook.Initialize(Sender:
TObject);

begin
 AssignFile(dataFile, 'c:\Address.dat');
 try
 Reset(dataFile);
 except
 Rewrite(dataFile);
 end;
end;

{Clear the edit boxes on the form}
procedure TfrmAddressBook.ClearForm(Sender:
TObject);

begin
 edtFirstName.Clear;
 edtLastName.Clear;
 edtAddress.Clear;
 edtCity.Clear;
 edtState.Clear;
 edtZip.Clear;
 edtPhoneNumber.Clear;
end;

{Close the database file and terminate the
program}
procedure TfrmAddressBook.Terminate(Sender:
TObject;
 var Action: TCloseAction);
begin
 CloseFile(dataFile);
end;

end.

Figure 12. User Interface for Address Book Program

Delphi™

29

As a final note, Delphi contains a TFileStream class

for object-oriented file I/O. This offers the programmer a

portable, high-level approach to file I/O. The next section

introduces object-oriented programming in Delphi.

Object-Oriented Programming
As previously discussed, Delphi has a complete object

model. All components and controls are ancestors of TObject,

the base object class. Thus, all components and controls are

fully extensible through object-oriented programming (OOP).

VB, however, does not have a complete object model. It does

not offer true object inheritance and polymorphism like Delphi.

Rather than extol the virtues of OOP and detail its

syntax in Object Pascal, I have opted to provide an example.

The following Delphi unit file defines two classes, Employee
and Supervisor. The Supervisor class is a descendant of

the Employee class. A sample execution of this code appears in

Figure 13.
unit OOPEx;

interface

uses
 Windows, Messages, SysUtils, Classes,
 Graphics, Controls, Forms, Dialogs,
 StdCtrls;

type
 TfrmOOPEx = class(TForm)
 btnTest: TButton;
 memOutput: TMemo;
 procedure DoTest(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

type
 NameStr = String[25];
 IDStr = String[10];
 DivType = (Operations, Production,
 Maintenance);
 Employee = class
 lastName: NameStr;
 firstName: NameStr;
 division: DivType;
 procedure SetAll(lname, fname:
 NameStr; dv: DivType);
 procedure SetLastName(lname: NameStr);

 function GetLastName: NameStr;
 procedure SetFirstName(fname: NameStr);
 function GetFirstName: NameStr;
 procedure SetDivision(dv: DivType);
 function GetDivision: DivType;
 end;
 Supervisor = class(Employee)
 managerID: IDStr;
 procedure SetAll(lname, fname: NameStr;
 dv: DivType;
 id: IDStr);
 procedure SetID(id: IDStr);
 function GetID: IDStr;
 end;

var
 frmOOPEx: TfrmOOPEx;

implementation

{$R *.DFM}

procedure Employee.SetLastName(lname:
 NameStr);
begin
 lastName := lname;
end;

function Employee.GetLastName: NameStr;
begin
 GetLastName := lastName;
end;

procedure Employee.SetFirstName(fname:
 NameStr);
begin
 firstName := fname;
end;

function Employee.GetFirstName: NameStr;
begin
 GetFirstName := firstName;
end;

procedure Employee.SetDivision(dv: DivType);
begin
 division := dv;
end;

function Employee.GetDivision: DivType;
begin
 GetDivision := division;
end;

procedure Employee.SetAll(lname, fname:
 NameStr;
 dv: DivType);
begin
 Self.SetLastName(lname);
 Self.SetFirstName(fname);
 Self.SetDivision(dv);

Delphi™

30

end;

procedure Supervisor.SetID(id: IDStr);
begin
 managerID := id;
end;

function Supervisor.GetID: IDStr;
begin
 GetID := managerID;
end;

procedure Supervisor.SetAll(lname, fname:
 NameStr; dv:
 DivType;
 id: IDStr);
begin
 Self.SetLastName(lname);
 Self.SetFirstName(fname);
 Self.SetDivision(dv);
 Self.SetID(id);
end;

procedure TfrmOOPEx.DoTest(Sender:
 TObject);

var
 emp: Employee;
 mgr: Supervisor;

begin
 emp := Employee.Create;
 mgr := Supervisor.Create;
 emp.SetAll('Thompson', 'James',
 Operations);
 mgr.SetAll('Stewart', 'Linda',
 Operations, '003685');
 memOutput.Clear;
 memOutput.Lines.Add('OPERATIONS DIVISION');
 memOutput.Lines.Add('Supervisor: ' +
 mgr.GetLastName + ', '
 + mgr.GetFirstName);
 memOutput.Lines.Add('Employee: ' +
 emp.GetLastName + ', '
 + emp.GetFirstName);
 emp.Free;
 mgr.Free;
end;

end.

Figure 13. Object-Oriented Programming Example

Linux Compatibility Issues
When developing for Windows, we sometimes rely upon some

technologies that, in all likelihood, will not be ported to Linux,

such as ActiveX and Open Database Connectivity (ODBC).

Although the use of ActiveX controls will not be ported to

Linux, the other aspects of Delphi will be. Any operations that

can be performed with the native components, including

creating new components, will be available in Kylix. As for

ODBC, drivers will be available to provide access to several

popular databases, including MySQL™, InterBase®, and many

others.

If you are presently using ActiveX Data Objects

(ADO) or Component Object Model/Distributed Component

Object Model (COM/DCOM) in your applications, you may

wish to do some further investigation as to their availability on

Linux. At this time, I know of no efforts on Microsoft’s part,

with the exception of COM/DCOM, to release these

technologies for Linux.

For component developers, there are substantial

differences between the Windows and Linux versions of Delphi,

but application developers will find very subtle differences.

Some key differences follow:

Delphi™

31

• Most component and property names are the same, but

there are some new properties as well as some missing

ones.

• The Linux file system is different from that of

DOS/Windows. Drive access is different and file

names are case sensitive.

• As previously stated, ActiveX is not supported under

Linux. Additionally, Object Linking and Embedding

(OLE) is unavailable. Thus, the ComObj, ComServ,

ActiveX, and Windows units do not exist in Kylix.

Built-in Debugger
Like VB, Delphi contains a built-in debugger to assist the

programmer in tracing code and locating errors. To use the

Delphi debugger, the integrated debugging option must be

enabled. To enable integrated debugging, select

Tools|Debugger Options… from the menu, check the

Integrated debugging box at the bottom left-hand side of the

Debugger Options window, and click the OK button.

The debugger commands are available through the Run

menu and the Debug toolbar. Additionally, debugger

commands can be quickly accessed through the Code Editor

window. Right-click anywhere inside the Code Editor window

to open a pop-up menu. The Debug option on this pop-up

menu lists the available debugger commands.

The Delphi debugger provides a semi-automatic

method of locating errors. It enables a programmer to watch

specific variables or expressions without modifying the program

code. Additionally, the debugger can stop the program

execution at designated breakpoints or execute the program code

step-by-step. Note that the debugger is a design-time utility;

none of the debugger commands may be used in an executable

module at run-time outside of the Delphi IDE.

Source breakpoints are toggled on and off at specific

lines of code designated by the programmer. Breakpoints can be

set only on executable lines of code. Blank lines, declaration

statements, and comments cannot have breakpoints. When a

breakpoint is encountered, program execution is temporarily

halted until the programmer selects Run from the Run menu,

presses F9, or left-clicks the Run button on the Debug toolbar.

The Delphi debugger also allows address, data, and module load

breakpoints.

While a program is halted, the programmer can

immediately evaluate and modify expressions in the

Evaluate/Modify window (Figure 14). An expression may also

be viewed and changed in the Inspector window shown in

Figure 15. The Inspector window provides the programmer

with a better view of objects that have advanced data structures.

Figure 14. Evaluate/Modify Window

Figure 15. Inspector Window

The Delphi debugger has two different stepping

operations. Trace Into executes code one statement at a time.

For example, if the statement is a call to a subprogram, the next

statement displayed is the first statement in the subprogram.

Step Over executes a subprogram call as a single unit, and then

steps to the next statement in the current subprogram. Thus, in

every situation, Step Over moves to the next statement in the

current subprogram.

Delphi™

32

A watch expression is a user-defined expression that

allows the programmer to observe its behavior. Watch

expressions appear in the Watch window (Figure 16), and their

values are automatically updated in break mode. Furthermore,

the Local Variables window automatically displays the values of

all declared variables (all local variables) in the current

subprogram as shown in Figure 17.

Figure 16. Watch Window

Figure 17. Local Variables Window

Application Deployment
This section discusses how to compile Delphi projects and

distribute the final application.

Building Executable Files
Much like C, C++, and other high-level languages, generating an

executable file with Delphi is a two-step process. The first step

is to compile the project. This step checks the syntax of each

unit in the project and produces an object file for the unit. A

unit object file has a DCU extension, meaning Delphi Compiled

Unit.

Next, these object files must be linked. The linker

takes each of the unit object files in the project and then

combines them to produce a single executable file.

The Project menu in Delphi contains the commands

for creating the executable file. The Compile option compiles

each unit in the project, but it does not link them. The Build

menu item compiles the units, if necessary, and then links them

together, creating the final executable file.

Distributing the Application
If your project does not access a database, third-party Dynamic

Link Library (DLL), or ActiveX control, then the executable file

that is generated is a stand-alone executable. You can simply

copy this executable file to a floppy disk or other removable

media and run it on any machine that uses its target operating

system. All of the Delphi controls used in the project are

compiled into the resulting executable file. There is nothing

extra that needs to be included with the application.

As with VB, if you use ActiveX controls in a project,

the distribution of the application becomes more complicated.

You must distribute the OCX file for each ActiveX control used

in the project. Be sure to read the documentation for third-party

ActiveX controls; some require additional DLLs.

For Windows, an elegant method of deploying an

application is to create a setup program. If you create your own,

be sure to register all ActiveX controls used by the application.

This is accomplished by running the RegSvr32.exe utility.

The preferred method of creating a setup program is to

use one of the many commercially available installation packages.

VB includes the Package and Deployment Wizard for this

purpose. Similarly, Delphi ships with InstallShield Express.

This is a menu-driven installation utility that allows you to create

a setup program for application deployment.

Additional References
I am the lead co-author of a VB textbook, and I have written a

forthcoming Delphi textbook. While both of these texts are

designed for introductory programming courses, they also prove

Delphi™

33

to be invaluable references for advanced programmers. Both of

these textbooks are published by Addison Wesley Longman

(AWL). See the AWL web site (www.awl.com/cs) for more

information regarding the texts.

Computer Programming Fundamentals with Applications in Visual Basic

6.0, by Mitchell C. Kerman and Ronald L. Brown

An Introduction to Computer Science: Programming and Problem Solving

with Delphi (tentative title), by Mitchell C. Kerman

Additionally, there are several companies that offer

seminar or classroom training on Delphi. RayTech Software,

Inc. (certified as both a VB and Delphi trainer), offers training

courses and consulting services. RayTech recently developed a

full one-day seminar specifically for training VB developers in

Delphi. RayTech courses range from certified classes that use

standardized materials to custom courses tailored to meet your

specific needs. For more information, see the RayTech Software

web site, www.raytech-software.com.

If textbooks or training classes won’t suit your needs, I

recommend going to the source. I use the Microsoft and Inprise

developer’s web sites, online help utilities, and printed

documentation. If you must use another printed reference,

choose a book that comes directly from the source: Microsoft

Press for Microsoft products and Borland Press through

Macmillan Publishing.

Conclusions
Delphi is a fully capable RAD tool that harnesses the power of

the Object Pascal language. It offers a variety of readily available

components and tools, a hierarchical component design, true

object-orientation, and an intuitive IDE. Furthermore, Delphi is

currently available for Windows and the Linux version will be

released soon.

While no single document can truly expound the

benefits of Delphi, I hope that I have at least intrigued you with

the ease with which you can migrate from VB to Delphi and

become a proficient Delphi developer.

Enjoy your future with Delphi for Windows and Linux.

Inprise Corporation has truly let the genie out of the bottle for

Windows and Linux development, its name is Delphi, and you

are granted an infinite number of wishes.

Copyright © 2000 Inprise Corporation. All rights reserved. All Inprise and Borland brands and
product names are trademarks or registered trademarks of Inprise Corporation. Java is a
trademark or registered trademark of Sun Microsystems, Inc. in the U.S. and other countries.
CORBA is a trademark or registered trademark of Object Management Group, Inc. in the U.S.
and other countries. 11609

	Introduction
	
	What is Linux?
	Benefits of Delphi
	Purpose of this Paper

	Integrated Development Environment
	
	Menu Bar
	Toolbars
	Standard Toolbar
	View Toolbar
	Debug Toolbar
	Custom Toolbar
	Desktops Toolbar
	Component Palette

	Smaller Windows
	Form Window
	Object Inspector® Window
	Code Editor Window
	Other Windows

	Programming Language
	
	Delphi File Types
	Project File
	Units
	Elements of Programming
	Comments
	Statement Termination
	Identifiers
	Data Types
	Constants
	Variables
	Operators

	Decision Structures
	if Statements
	case Statements

	Repetition Structures
	for Loops
	while and repeat Loops
	break and continue Statements

	Subprograms
	Procedures
	Functions
	Parameter Passing

	Data Structures
	Arrays
	Short Strings
	Enumerated Types
	Sets
	Records
	Pointers

	File Input and Output
	Text Files
	Binary Files

	Object-Oriented Programming
	Linux Compatibility Issues

	Built-in Debugger
	Application Deployment
	
	
	Building Executable Files
	Distributing the Application

	Additional References
	Conclusions

