
The Kylix™

Object Model
by Ray Konopka, Raize Software, Inc.

Overview
Borland® Kylix,™ the Borland development environment for the

Linux® platform, has been modeled after Borland® Delphi,™ the

award-winning Windows® RAD environment. At the core of

both environments is the Object Pascal language—a rich, object-

oriented language wonderfully suited for development in a RAD

environment. Over the years, Borland has continued to enhance

the Object Pascal language, with Kylix representing the latest

incarnation of the Object Pascal compiler.

A true object-oriented language, Object Pascal has its own object

model, which defines the structure and capabilities of objects

created using the language. This paper introduces the object

model used in Kylix; it does not provide an introduction to

object-oriented programming. As a result, this paper is geared

towards familiarizing an experienced Delphi, C++, Java,™ or

Visual Basic® programmer with the Kylix object model.
Table of Contents

Overview 1

The object model 2

Visibility directives 2

Object reference model 3

A common ancestor 4

Forward class declarations 4

Virtual methods 5

Method pointers 6

Class references and virtual constructors 7

Class methods 8

Runtime type information 8

Properties 9

Summary 11
Kylix™

Kylix ™ Object Model

2

The object model
Taken together, the object-oriented features of a language are

commonly referred to as the language’s object model. Kylix

inherits its object model from its underlying language. The

Object Pascal object model shares many features found in other

languages such as C++ and Java, and it introduces some of its

own unique features. For example, Kylix classes can be defined

to include properties, which are formal declarations of attributes

for a class. Properties are the most powerful addition to the

object model and represent a significant portion of the CLX™

(component library for cross-platform development) component

architecture.

Properties are not the only feature supporting the component

architecture. In fact, the entire object model was specifically

designed with components in mind. That is, virtually all of the

features in Object Pascal originally were introduced to support

the construction of components. As a result, every aspect of

the object model is somehow affected by components, and

vice-versa.

In this paper, we’ll take a closer look at the mechanics behind the

Kylix object model. The goal of this paper is not to teach you

object-oriented programming but to familiarize you with the

object-oriented features and syntax of Kylix. Therefore, it is

necessary to have at least a basic understanding of object-

oriented programming.

Visibility directives
A key concept in object-oriented programming is information

hiding. The objective is to create classes in which the

implementation details are hidden from the outside world. That

is, direct access to the underlying data of a class should be

restricted to only those methods within the same class. These

methods provide the external interface to the data. Therefore, if

the implementation of the underlying data changes, users of the

class are unaffected because the method interface that is used to

access the data remains constant.

To support information hiding, Kylix provides four visibility

directives: public, private, protected, and published. If you are

familiar with other object-oriented languages, you should

recognize most of these directives. It is important to note,

however, that the scoping rules in Object Pascal are slightly

different than in Java and C++. To help explain the various

directives, the following sample units will be used:

unit Frames;
interface
type
 TSimpleFrame = class
 private
 FSides: TRect;
 FVisible: Boolean;
 protected
 function GetSides: TRect;
 public
 constructor Create(Bounds: TRect);
 function IsVisible: Boolean;
 procedure Hide;
 procedure Show;
 procedure Draw; virtual;
 end;
 TColorFrame = class(TSimpleFrame)
 private
 FColor: TColor;
 protected
 function GetColor: TColor;
 public
 constructor Create(Bounds: TRect;
 AColor: TColor);
 procedure Draw; override;
 end;
implementation
end. {=== Frames Unit ===}

unit TxtFrame;
interface
uses
 Frames;

type
 TTextFrame = class(TColorFrame)
 private

Kylix ™ Object Model

3

 Text : string;
 public
 constructor Create(Bounds: TRect;
 AColor: TColor;
 AMsg: string);
 procedure Draw; override;
 end;
implementation
end. {=== TxtFrame Unit ===}

Public is the least restrictive directive. Public items are visible to

any program or unit that has access to the unit in which the

corresponding class is defined. For example, the IsVisible

function of TSimpleFrame is visible to the TxtFrame unit

because it uses the Frames unit.

The most restrictive directive is private, which restricts visibility

to the unit in which the class resides. For example, a

TSimpleFrame object declared outside of the Frames unit does

not have access to the FSides field. Likewise, the

TTextFrame.Draw method (in the TxtFrames unit) does not

have access to the FSides field. Since the TColorFrame class

resides in the Frames unit, however, its Draw method does have

access to FSides. Thus, within a unit, private has the same

visibility rules as public. (C++ developers will recognize this as

friend classes.)

The rules for the new protected directive fall in between the

extremes of public and private. That is, within a unit, protected

fields and methods follow the same rules as private and public.

But outside of the unit, only the methods of descendant classes

have access to protected items. So, a derived class in another unit

can access the protected data fields defined in a class. You don’t

even need the source code for the ancestor class! As an example,

the TTextFrame.Draw method has access to its ancestor’s

GetColor method, but a TTextFrame object does not.

When creating classes, private should be used only for fields and

methods that are truly class-dependent or to be hidden from all

derived classes. Any fields or methods a programmer might want

to access via a descendant class should be declared as protected.

If you are unsure, it is better to declare items as protected, thus

giving access to descendant classes.

The final directive is published. It was not used in the sample

units because its visibility rules are identical to public. The

difference between the two is that the published directive

instructs the compiler to add extra runtime type information

(RTTI) for the items that appear in that section. Because of this,

fields defined in the published section must be of a class type, or

they must define a property. The published section is used to

specify which properties of a CLX component will appear in the

Kylix Object Inspector.™ Runtime type information and

properties are described in more detail in subsequent sections.

Note that fields and methods declared immediately following the

class type heading have a default visibility of published if the

class is compiled in the {$M+} state, or if the class descends from

a class that was compiled in the {$M+} state. In all other cases,

the default visibility is public.

For example, if you create a new form in Kylix and drop a

button on the form, you will see that the button declaration

appears immediately following the class type heading. In this

situation, Button1 is a published field because TForm is a

descendant of TPersistent, which is declared using the {$M}

directive. Therefore, any unspecified fields, such as Button1, are

published.

Object reference model
In C++, an object’s memory can be allocated statically or

dynamically. With Kylix, all object instances are dynamically

allocated from the heap and referenced via a pointer. However,

since all objects are referenced on the heap, Kylix does not

Kylix ™ Object Model

4

require the use of a pointer de-reference operator to access fields

of the object instance.

In particular, Kylix uses a reference model that simplifies the

syntax for referencing the fields and methods of objects.

Specifically, when you reference an object instance, Kylix

automatically assumes that you want to de-reference the pointer.

Therefore, the caret symbol (^) used to de-reference pointers in

Object Pascal is not necessary when de-referencing an object.

The following code fragment demonstrates how classes are

declared and used within Kylix.

program ReferenceModel;
type
 TSample = class
 ID : Integer;
 constructor Create;
 end;
var
 Sample: TSample;

begin
 Sample := TSample.Create;
 Writeln('Sample.ID = ', Sample.ID);
 Sample.ID := 101;
 Writeln('Sample.ID = ', Sample.ID);
 Sample.Free; // Call Free to Clean Up
end.

By convention, constructors are called Create. When attributes

(called properties) of the Sample object are accessed, there is no

need to use the de-referencing operator (^) because de-

referencing is implied. (For simplicity, an exception block was

not used in the above example.)

The implicit de-referencing of Kylix occurs only with objects of

class types. Standard pointer variables still must be de-referenced

using the caret symbol. To create a class type object, the

constructor works as a function returning a pointer to the

created object. It is not necessary to use New and Dispose to

create and destroy Kylix objects.

A common ancestor
Take another look at the previous code example, specifically the

class declaration for TSample. Notice that this class does not

specify an ancestor class. Like Java, all classes in Kylix have a

common ancestor. More precisely,

type
 TSample = class
 . . .
 end;

is equivalent to:

type
 TSample = class(TObject)
 . . .
 end;

Although there are several advantages to having a common

ancestor, the most significant is the fact that all objects can be

treated polymorphically. For example, the AddObject method of

the TStringList class takes two parameters. The first is a string,

and the second is a TObject. Therefore, a TStringList can be

used to manage a list of objects. This is significant because the

list is able to manage an instance of any class.

In addition to its polymorphic advantage, TObject provides a

default constructor and destructor. The Create constructor

allocates memory for the object instance and initializes all data

fields to zero, while the Destroy destructor releases the memory

and destroys the object instance. However, as seen in the earlier

code fragments, the Free method of TObject should be called

when an object is to be destroyed. So free first checks to make

sure the object was actually instantiated before attempting to call

Destroy.

Kylix ™ Object Model

5

Forward class declarations
One of the most frequently asked questions regarding class

declarations is how to declare two classes where each class

contains a data field of the other class. This particular problem is

handled by creating a forward class declaration. The following

statement is a forward declaration for the TSample class.

type
 TSample = class;

Now TSample can be referenced within another class without

having to be completely declared. Remember that the complete

declaration of TSample must be specified in the same type

declaration block in which the forward reference appears.

The QControls unit in Kylix has a fine example of how to use

forward class declarations. In the code fragment that follows

(taken from that unit), the TWidgetControl class must be

declared as forward because the TControl class references the

TWidgetControl class through its FParent field. The order of the

class declarations cannot be changed to eliminate the need for

the forward declaration. Since TWidgetControl descends from

TControl, it must come after the declaration of TControl, or

TControl must be declared as a forward reference before

TWidgetControl.

type
 TWidgetControl = class;
 TControl = class(TComponent)
 FParent : TWidgetControl;
 . . .
 end;
 TWidgetControl = class(TControl)
 . . .
 end;

Do not be confused by the notation here. This does not result in an

infinite recursion of class declarations, as one might suspect. Recall the

reference model that is utilized in Kylix—FParent is not a static object

but a pointer to an object.

Virtual methods
Kylix supports two types of virtual methods: virtual and

dynamic. The difference between virtual and dynamic is the

structure of their corresponding method tables (VMTs and

DMTs), the classic speed-versus-size tradeoff. Dispatching

dynamic methods is slightly slower than dispatching virtual

methods. In turn, dynamic methods are more space-efficient.

To specify the dispatch mechanism used for a method, the

virtual or dynamic directives are used. Once a dispatch

mechanism is specified for a method, it cannot be changed in a

descendant class. Also, it is perfectly acceptable to use both

virtual and dynamic methods in a single class declaration.

Since Kylix uses two different directives to specify how a method

is dispatched, how does this affect methods declared in

descendant classes? Specifically, how does one override a virtual

or dynamic method? To override the functionality of an ancestor

method, the override directive is used. Override is used

regardless of how the ancestor’s method was declared. Consider

the following program code:

program VirtualMethods;
type
 TBase = class
 procedure VirtualProc; virtual;
 procedure DynamicProc; dynamic;
 procedure BrokenChain; virtual;
 end;
 TDesc = class(TBase)
 procedure VirtualProc; override;
 procedure DynamicProc; override;
 procedure BrokenChain; virtual;
 end;
 procedure TBase.VirtualProc;
 begin
 Writeln('TBase.VirtualProc');

Kylix ™ Object Model

6

 end;
 procedure TBase.BrokenChain;
 begin
 Writeln('TBase.BrokenChain');
 end;

 procedure TDesc.VirtualProc;
 begin
 inherited VirtualProc;
 Writeln('TDesc.VirtualProc');
 end;
 procedure TDesc.BrokenChain;
 begin
 inherited BrokenChain;
 Writeln('This method will not be ' +
 'called by TestBroken');
 end;
 procedure TestVirtual(P: TBase);
 begin
 P.VirtualProc; // Test virtual method chain
 end;
 procedure TestBroken(P: TBase);
 begin
 // Test what happens when chain is broken
 P.BrokenChain;
 end;
var
 DescObj: TDesc;
begin
 DescObj := TDesc.Create;

 // Displays 'TBase.VirtualProc',
 // then 'TDesc.VirtualProc'
 Writeln('{==== Testing Virtual Chain ====}');
 TestVirtual(DescObj);

 // Displays 'TBase.BrokenChain' ONLY
 Writeln('{==== Testing Broken Chain ====}');
 TestBroken(DescObj);
 DescObj.Free;
end.

The override directive is not used simply for convenience: it is

necessary to maintain the polymorphic hierarchy established

between the two classes. For example, since the BrokenChain

method is re-declared as virtual in the TDesc class, the chain is

broken, and the call to TestBroken displays only

“TBase.BrokenChain.”

Abstract methods

Another feature related to virtual methods involves the first

method in a virtual method hierarchy: the declaration of abstract

methods. Kylix takes a more formal approach to abstract

methods by utilizing the abstract directive, which is placed after

the method’s declaration. This formal designation makes it

unnecessary—and illegal—to actually define the method’s

implementation for this class. For example, the following code

declares a class with an abstract method:

type
 TSample = class
 . . .
 procedure SomeMethod; virtual; abstract;
 end;

Even though SomeMethod is abstract, objects of TSample still

can be created (although you will receive a compiler warning if

you have warnings enabled). If SomeMethod is called, the

application will terminate. The abstract directive is valid only in

the class where the method is first declared, and the method

must be either virtual or dynamic.

Method overloading

Next on the list is method overloading, which allows class

declarations to have more than one method with the same name.

Several rules must be followed when overloading methods. For

instance, each method must have a different type signature. That

is, the types of parameters and return types must be unique to

each method. Overloaded methods are identified by the overload

keyword. The following sample shows how two Update methods

can be declared for the same class:

type
 TSample = class
 public

Kylix ™ Object Model

7

 procedure Update(S: string); overload;
 procedure Update(I: Integer); overload;
 end;

Note that global functions and procedures can also be

overloaded in Kylix.

Default parameters

In addition to method overloading, Kylix also supports default

parameters for procedures and functions. Default parameters

allow developers to call the procedure or function without

specifying values for every single parameter. A common example

of a default parameter can be found in the standard Inc routine,

which is used to increment an integer value. Assuming X is

declared as an integer, the following two statements are valid:

Inc(X); { Increment X by 1 }
Inc(X, 5); { Increment X by 5 }

To specify default parameters in your own procedures and

functions, the parameter must have the form: Name: Type =

Value. Therefore, to implement our own custom increment

routine, we would write:

procedure Increment(var X: Integer;
 I: Integer = 1);
begin
 X := X + I;
end;

When using default parameters with method overloading, it is

possible to introduce ambiguous method signatures. Consider

the following two methods:

procedure P(I: Integer;
 J: Integer = 0); overload;
procedure P(Size: Integer); overload;

The compiler will not allow both of these declarations to exist

because it is impossible to determine which method should be

used in a call such as P(5).

Method pointers
Method pointers are similar to procedure pointers of function

pointers. However, instead of pointing to standalone procedures,

method pointers must point to methods of a class. Method

pointers are extremely useful when used between two classes.

That is, one class contains a method pointer, which is linked to a

method of another class. This ability provides the basis for

extending an object by delegation rather than by deriving a new

object and overriding its methods.

This process of delegation is the way Kylix supports component

events (e.g., OnClick). Consider the following code fragments,

which show the pieces necessary for a scroll bar to control the

number of columns used in a list box. The TNotifyEvent type is

a method type declaration. (It looks very similar to a normal

procedural type declaration except that the of object clause is

placed at the end.) The TScrollBar class defines a method

pointer, FOnChange, of this same type. During design mode,

Kylix assigns FOnChange to point to the

TForm1.ScrollBar1Change method. Therefore, when the user

clicks the scroll bar, the scroll bar component interprets the

mouse events and eventually calls the Change method. The

Change method checks to see if the FOnChange method pointer

actually points to something. If it does, the associated method is

executed. By using method pointers, a TScrollBar descendant

class does not have to be created to provide this additional

functionality.

// Extracted from Classes.pas
type
 TNotifyEvent = procedure (Sender: TObject)
 of object;

Kylix ™ Object Model

8

// Extracted from QStdCtrls.pas
type
 TScrollBar = class(TWidgetControl)
 private
 FOnChange: TNotifyEvent;
 protected
 procedure Change; dynamic;
 end;
procedure TScrollBar.Change;
begin
 if Assigned(FOnChange) then
 FOnChange(Self);
end;
// Unit1.pas Sample
type
 TForm1 = class(TForm)
 ScrollBar1: TScrollBar;
 ListBox1: TListBox;
 procedure ScrollBar1Change(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;
procedure TForm1.ScrollBar1Change(Sender: TObject);
begin
 ListBox1.Columns := ScrollBar1.Position;
end;

Class references and
virtual constructors
Let’s continue our discussion of methods by focusing on class

constructors. In Kylix, constructors can be virtual. But, virtual

constructors by themselves are not very useful. In order to utilize

virtual constructors, Object Pascal supports the notion of class

reference types (sometimes called metaclasses).

From a class reference type, a class reference variable can be

instantiated and assigned to any class that is assignment-

compatible with the referenced class. In the code that follows,

the ClassRef variable is a class reference for the TBase class.

Therefore, any of the other classes can be assigned to ClassRef

because all of those classes are derived from TBase. As the first

line after the “begin” shows, ClassRef is legally assigned to the

TSample class. And since the constructors for this hierarchy are

all virtual, an object instance of TSample is created on the next

line.

type
 TBase = class
 constructor Create; virtual;
 . . .
 end;
 TDescendant = class(TBase)
 constructor Create; override;
 . . .
 end;
 TSample = class(TBase)
 constructor Create; override;
 . . .
 end;
 // Class Reference Type
 TBaseClass = class of TBase;
var
 ClassRef: TBaseClass; // Class Reference Variable
 BaseObj: TBase; // Object Instance Variable

begin
 // Point ClassRef to TSample Class
 ClassRef := TSample;

 // Polymorphically Create TSample Object
 BaseObj := ClassRef.Create;
end;

Virtual constructors are very powerful indeed—especially when

used with class references. Actually, it is through the use of class

references and virtual constructors that the Kylix form designer is

able to create components that are dropped onto forms.

Class methods
Next on our list of object model features is class methods, which

are like regular methods except that they can be executed via a

class reference. Although class methods also can be called from

an object instance, the implementation of class methods cannot

reference any instance data, fields, or normal methods of the

class type. Constructors and other class methods may be

referenced, however. As a result, class methods usually modify

global data or return information about the class.

Kylix ™ Object Model

9

Class methods combine the benefits of belonging to a class with

the accessibility of a normal procedure or function. Even though

these methods can be called without creating an object instance,

class methods are still bound by the access rights specified in the

class declaration. Specifically, if a class method is declared in the

private section, that method can be called only from within the

unit that defines the class.

The following program declares a simple class that contains a

class method. First, the class method is invoked without creating

a TSample object, and the returned string is displayed. The

string displayed is the same one that will be displayed when

GetClassName is called through the Obj object.

program ClassMethods;
{$APPTYPE CONSOLE}

type
 TSample = class
 ID: Integer;
 class function GetClassName: string;
 end;
class function TSample.GetClassName : string;
begin
 // Not Dependent on Any Class Data
 Result := 'The Sample Class';
end;
var
 Obj: TSample;
 S: string;

begin
 // Invoke the Class Method
 S := TSample.GetClassName;

 Writeln(S); // Displays 'The Sample Class'

 // Create object instance and
 // call the method the normal way
 Obj := TSample.Create;
 S := Obj.GetClassName;

 Writeln(S); // Displays 'The Sample Class'
 Obj.Free;
end.

Class variables

Note that Object Pascal currently does not support class

variables. It is possible, however, to accomplish the same effect

by declaring a variable for this purpose in the implementation

section of the unit that defines the associated class. The class

methods will have access to the unit variable, but the outside

world will not.

Runtime type information
When dealing with polymorphism and hierarchies of classes,

there are many times when it is necessary to determine the type

of object to which an object reference is referring. Kylix provides

an easy way to accomplish this through runtime type

information (RTTI). More precisely, the is operator provides

access to an object’s RTTI to determine if an object’s type is that

of a particular class or one of its descendants. The is operator is a

Boolean operator that takes as arguments an object instance and

a class type. For example, the following method can be used to

implement a Copy toolbar button:

procedure TForm1.SpeedButton1Click(Sender: TObject);
begin
 if ActiveControl is TCustomEdit then
 TCustomEdit(ActiveControl).CopyToClipboard;
end;

The is operator is used to check if the currently active control is

a descendant of TCustomEdit. If ActiveControl is compatible

with TCustomEdit (e.g., TEdit, TMemo, TMaskEdit), then the

CopyToClipboard method is called.

Kylix also provides the as operator, which uses RTTI to ensure

safe typecasting. The statement ActiveControl as TCustomEdit

is roughly equivalent to TCustomEdit(ActiveControl). However,

the as operator goes an extra step to ensure that the typecast is

Kylix ™ Object Model

10

valid. If the typecast cannot be made, an EInvalidCast exception

is raised. The as operator is used quite extensively in the CLX

code, especially in with..do blocks. For example,

with ActiveControl as TCustomEdit do . . .

could be used instead of

if ActiveControl is TCustomEdit then
 with TCustomEdit(ActiveControl) do . . .

Properties
The most significant feature of the Kylix object model is the

formal specification for properties. The concept of properties is

not a new one. In fact, properties are a natural aspect of real-

world objects. For example, differences between two chairs can

be described by differences in their properties such as color,

height, and style. In other object-oriented languages (such as

C++ and Java), properties are represented in code as data fields in

your class definition with corresponding methods to access the

data. But since properties are such integral parts of describing

objects, Borland has formally introduced properties into the

Kylix object model. This formal implementation allows for more

complete data privacy and flexible data access. Consider the

following class declaration:

type
 TChair = class
 private
 FColor: TColor;
 . . .
 protected
 function GetColor: TColor; virtual;
 procedure SetColor(Value: TColor); virtual;
 public
 property Color: TColor
 read GetColor
 write SetColor;
 end;

This partial declaration defines a simple chair class. The reserved

word property is used to specify a property of the chair, in this

case, color. The declaration of the Color property specifies that

its type is TColor. The read and write clauses specify the access

methods of the property. That is, whenever the value of the

property is required, the method that is listed in the read clause

is called. Likewise, the method listed in the write clause is used

whenever the value of the property is changed.

The read access method is always a function whose return type is

the same as the property. By convention, read access methods

start with “Get” followed by the name of the property.

The write access method, on the other hand, is always a

procedure that takes a single parameter of the same type as the

property. A programmer never makes a direct call to an access

method. Instead, properties are used like variables, and the

compiler takes care of using the correct access method when

needed.

The FColor private data field represents the internal data storage

for the Color property. In this example, the data types of the

data storage and the property are the same. This is not a

requirement, nor is it necessary that a property even have an

internal data field. In fact, a property may represent a conceptual

value that is calculated from other sources. Like access methods,

storage fields also have a naming convention: an F is prefixed to

the property name.

It should be noted that a property does not need access methods.

More precisely, the read and write clauses may specify the

internal data field directly. For example, the above property

definition could be written as:

property Color: TColor
 read FColor
 write SetColor;

Kylix ™ Object Model

11

In this case the GetColor method is not needed. Instead, the

Color property gets its value directly from FColor. Although you

could also replace the SetColor access method with the FColor

field, you would give up quite a bit of power and flexibility in

doing so. One of the most powerful features of the

implementation of properties of Kylix is that side effects can

occur via the access methods. For example, if the user changes

the color of a chair, the SetColor method not only stores the new

color value in FColor, but also repaints the chair with the new

color.

Taking this a step further, if you completely omit the write

clause from a property declaration, you create a read-only

property. By definition, read-only properties are available only at

runtime. Likewise, removing the read clause would create a

write-only property, but these instances are rare.

A property can be any type that can be returned from a function.

Note that instances of a class also can be returned from a

function. Thus, a property could be an object instance of a class.

For example, the common font property is actually a class, which

has its own properties.

Take another look at the class declaration for TChair.

Specifically, notice the usage of the three access directives. Since

the internal data fields are part of the implementation of the

property, they appear in the private section. How does this affect

descendant components? Since these data fields are

implementation-dependent, there is no reason to have these

fields visible to descendants. Instead, a descendant should access

the property itself and not the internal representation. This

allows the original component class to change the internal

representation without affecting descendant classes.

Access methods for properties can be placed in either the private

or protected sections of a class. The advantage of placing them in

the protected section and making them virtual is that descendant

class easily can modify the side effects of a property without

having to redefine the property.

Since access methods by their very nature should not be

accessible to an object instance, they should not be placed in the

public nor published sections. The property itself should be

declared as public (or published) so that the user can access it.

It is also possible to have a single property behave as if it were an

array. Array properties have multiple values of the same type,

with an individual value being referenced by an index. However,

you cannot reference an array property as a whole, like you can

with a normal array. Array properties are declared like this:

property Colors[Index: Integer]: string
 read GetColors
 write SetColors;

The access methods look slightly different for an array property.

That is, the read access method takes a single parameter that

represents the index of the property item to retrieve.

function TChair.GetColors(Index: Integer): string;

Likewise, the write access method takes as its first parameter an

index, and the second parameter is the new value for the

property. Here is an example of a write access method:

procedure TChair.SetColors(Index: Integer;
 Value: TColor);

Array properties are quite powerful because the elements in the

array can be indexed any way you choose. That is, the index

value does not have to be an ordinal data value: the index could

be a string type, for example.

Kylix ™ Object Model

12

Summary
Fortunately, you do not have to be proficient in the Kylix object

model in order to develop fully functional applications. Knowing

the enhancements that have been made, however, should give

you an appreciation for the power and flexibility of the Kylix

compiler. It should also give you a better understanding of how

Kylix works, since Kylix and CLX are written in Object Pascal.
Made in Borland® Copyright © 2001 Borland Software Corporation. All rights reserved. All
Borland brand and product names are trademarks or registered trademarks of Borland Software
Corporation in the United States and other countries. Corporate Headquarters: 100 Enterprise
Way, Scotts Valley, CA 95066-3249 • 831-431-1000 • www.borland.com • Offices in: Australia,
Brazil, Canada, Czech Republic, France, Germany, Hong Kong, Hungary, Ireland, Japan, Korea,
the Netherlands, New Zealand, Russia, Singapore, Sweden, Taiwan, the United Kingdom, and
the United States. • 11815
100 Enterprise Way
Scotts Valley, CA 95066-3249
www.borland.com | 831-431-1000

http://www.borland.com/
http://www.borland.com/

	Overview
	The object model
	Visibility directives
	Object reference model
	A common ancestor
	Forward class declarations
	Virtual methods
	Abstract methods
	Method overloading
	Default parameters

	Method pointers
	Class references and �virtual constructors
	Class methods
	Class variables

	Runtime type information
	Properties
	Summary

