
A quick tour of
Kylix

Introduction

Borland Kylix is an object-oriented, visual

programming environment for rapid application

development (RAD). Using Kylix you can create highly

efficient 32-bit Linux applications for Intel architecture

with a minimum of manual coding. Kylix provides all the

tools you need to develop, test, and deploy applications,

including a large library of reusable components, a suite

of design tools, application templates, and programming

wizards. These tools simplify prototyping and shorten

development time.

This white paper explains how to start Kylix and gives

you a quick tour of the main parts and tools of the

desktop, or integrated desktop environment (IDE) and it

gives you an overview of software development with

Kylix. This includes creating a project, working with

forms, writing code, and compiling, debugging,

deploying, and internationalizing programs.

Table of Contents
Starting Kylix 2

Getting started: The IDE 2

Controlling Kylix: The menu and toolbars 2

Managing projects: The Project Manager 3

Browsing project structure and elements:

The Project Browser 3

Adding items to your projects: The Object

Repository 4

Building the user interface: The Form

Designer, Component palette, and Object

Inspector 6

Viewing and editing code: The Code Editor

And Code Explorer 7

Programming with Kylix 10

Creating a project 10

Building the user interface 11

Writing code 13

Compiling and debugging projects 14

Deploying programs 15

Internationalizing applications 15

Kylix™

Kylix™

2

Starting Kylix
You can start Kylix in the following ways:

• From a shell window, enter {install

directory}/bin/startkylix. For example, if your

install directory is in the /root directory, enter:

/root/kylix/bin/startkylix.

• From the Application Starter menu, choose

Borland Kylix|Kylix or Personal| Borland

Kylix|Kylix.

Getting started: The IDE
When you first start Kylix, you�ll see some of the major

tools in the IDE. In Kylix, the IDE includes the toolbars,

menus, Component palette, Object Inspector, Code

Editor, Code Explorer, Project Manager, and many other

tools. The particular features and components available

to you will depend on which edition of Kylix you�ve

purchased.

1. Palette of ready-made components to use in your

applications. 2. Code Editor for viewing and editing code.

3. The Form Designer contains a blank form on which to

start designing the user interface for your application. An

application can include many forms.

4. The Code Explorer shows you the classes, variables,

and routines in your unit and lets you navigate quickly.

The Code Explorer does not come with all editions of

Kylix.

5. The Object Inspector is used to change objects’

properties and select event handlers.

Kylix�s development model is based on two-way tools.

This means that you can move back and forth between

visual design tools and text-based code editing. For

example, after using the Form Designer to arrange

buttons and other elements in a graphical interface, you

can immediately view the form file that contains the

textual description of your form. You can also manually

edit any code generated by Kylix without losing access

to the visual programming environment.

From the IDE, all your programming tools are within

easy reach. You can manage projects, design graphical

interfaces, write code, compile, test, debug, and browse

through class libraries without leaving the IDE.

Controlling Kylix: The menu and
toolbars
The main window, which occupies the top of the screen,

contains the menu, toolbars, and Component palette.

Main window in its default arrangement.

Kylix�s toolbars provide quick access to frequently used

operations and commands. All toolbar operations are

duplicated in the drop-down menus.

Standard toolbar

1 New

2 Open project

3 Save

4 Save all

5 Open project

6 Add file to project

7 Remove file from project

1

2

3

4

5

1 2 4 5 6 73

Kylix™

3

View toolbar

1 View unit

2 View form

3 Toggle form/unit

4 New form

Desktops toolbar

1 Name of saved desktop layout

2 Save current desktop

3 Set debug desktop

Debug toolbar

1 Run

2 List of projects you can run

3 Pause

4 Trace into

5 Step over

To find out what a button does, point to it for a moment

until a tooltip appears.

You can use the right-click menu to hide any toolbar. To

display a toolbar if it’s not showing, choose

View|Toolbars and check the one you want.

Many operations have keyboard shortcuts as well as

toolbar buttons. When a keyboard shortcut is available,

it is always shown next to the command on the drop-

down menu.

You can right-click on many tools and icons to display a

menu of commands appropriate to the object you are

working with. These are called context menus.

The toolbars are also customizable. You can add

commands you want to them or move them to different

locations.

Managing projects: The Project
Manager
When you first start Kylix, it automatically opens a new

project, as shown on page 2.

A project includes several files that make up the

application or shared object you are going to develop.

You can view and organize these files�such as form,

unit, resource, object, and library files�in a project

management tool called the Project Manager. To display

the Project Manager, choose View|Project Manager.

You can use the Project Manager to combine and display

information on related projects into a single project group.

By organizing related projects into a group, such as

multiple executables, you can compile them at the same

time.

Browsing project structure and
elements: The Project Browser

The Project Browser examines a project in detail. The

Browser displays classes, units, and global symbols

(types, properties, methods, variables, and routines)

your project declares or uses in a tree diagram. Choose

View|Browser to display the Project Browser.

1 2 43

1 2 3

1 2 43 5

Kylix™

4

The Project Browser has two resizeable panes: the

Inspector pane (on the left) and the Details pane. The

Inspector pane has three tabs for globals, classes, and

units.

Globals displays classes, types, properties, methods,

variables, and routines.

Classes displays classes in a hierarchical diagram.

Units displays units, identifiers declared in each unit, and

the other units that use and are used by each unit.

You can change the way the contents are grouped within

the diagram by right-clicking in the Browser, choosing

Properties, and, under Explorer categories, checking and

unchecking the check boxes. If a category is checked,

elements in that category are grouped under a single

node. If a category is unchecked, each element in that

category is displayed independently on the diagram�s

trunk.

By default, the Project Browser displays the symbols

from units in the current project only. You can change

the scope to display all symbols available in Kylix.

Choose Tools|Environment Options, and on the

Explorer page, check All symbols (CLX included).

Creating to-do lists

To-do lists record items that need to be completed for a

project. You can add project-wide items to a list by

adding them directly to the list, or you can add specific

items directly in the source code. Choose the View|

To-Do list to add or view information associated with a

project.

Right-click on a to-do list to display commands that let

you sort and filter the list.

Adding items to your projects: The
Object Repository

The Object Repository contains forms, dialog boxes, data

modules, wizards, shared object files, sample

applications, and other items that can simplify

development. Choose File|New to display the New Items

dialog box when you begin a project. The New Items

dialog box is the same as the Object Repository. Check

the Repository to see if it contains an object that

resembles one you want to create.

Click here when you’re

done with an item

Kylix™

5

1 The Repository’s tabbed pages include objects like

forms, frames, units, and wizards to create specialized

items.

2 When you’re creating an item based on one from the

Object Repository, you can copy, inherit, or use the

item: Copy (the default) creates a copy of the item in

your project. Inherit means changes to the object in

the Repository are inherited by the one in your

project. Use means changes to the object in your

project are inherited by the object in the Repository.

To edit or remove objects from the Object Repository,

either choose Tools|Repository or right-click in the New

Items dialog box and choose Properties.

You can add, remove, or rename tabbed pages from the

Object Repository.

Click the arrows to change the order in which a tabbed

page appears in the New Items dialog box.

Adding templates to the Object Repository

You can add your own objects to the Object Repository

as templates to reuse and share with other developers

over a network. Reusing objects lets you build families

of applications with common user interfaces and

functionality that reduces development time and

improves quality.

For example, to add a project to the Repository as a

template, first save the project and choose Project|Add

To Repository. Complete the Add to Repository dialog

box.

2

1

Kylix™

6

Enter a title, description, and author. In the Page list box,

choose Projects so that your project will appear on the

Repository’s Projects tabbed page.

The next time you open the New Items dialog box, your

project template will appear on the Projects page (or the

page to which you had saved it).

Building the user interface: The Form

Designer, Component palette, and Object

Inspector
The Component palette includes tabbed pages with

groups of icons representing visual or nonvisual CLX

components you use to design your application interface.

The pages divide the components into various functional

groups. For example, the Dialogs page includes common

dialog boxes to use for file operations such as opening

and saving files.

Component palette pages, grouped by function

Components

Each component has specific attributes—properties,

events, and methods—that enable you to control your

application. Use the Form Designer to arrange

components the way they should look on your user

interface. For the components you place on the form, use

the Object Inspector to set design-time properties, create

event handlers, and filter visible properties and events,

making the connection between your application’s visual

appearance and the code that makes your application

run.

Kylix™

7

After you place components on a form, the Object

Inspector dynamically changes the set of properties it

displays, based on the component selected.

Using frames

A frame (TFrame), like a form, is a container for

components that you want to reuse. A frame is more like

a customized component than a form. Frames can be

saved on the Component palette for easy reuse and they

can be nested within forms, other frames, or other

container objects. After a frame is created and saved, it

continues to function as a unit and to inherit changes

from the components (including other frames) it contains.

When a frame is embedded in another frame or form, it

continues to inherit changes made to the frame from

which it derives.

To open a new frame, choose File|New Frame.

You can add whatever visual or nonvisual components

you need to the frame. A new unit is automatically added

to the Code Editor.

Viewing and editing code: The Code
Editor and Code Explorer

As you design the user interface for your application,

Kylix generates the underlying Object Pascal code. When

you select and modify the properties of forms and

components, your changes are automatically reflected in

the source files.

You can add code to your source files directly using the

built-in Code Editor, which is a full-featured ASCII editor.

Generated code.

Components added to the form are reflected in the code.

Browsing with the Code Editor

The Code Editor has forward and back buttons like the

ones you’ve seen on Web browsers. You can use them to

navigate through source code. First press Ctrl and point to

any identifier. The cursor turns into a hand, and the

identifier turns blue and is underlined. Click to jump to

the definition of the identifier. Click the left, or back

arrow, to return to the last place you were working in

your code. Then click the right, or forward arrow, to

move forward again.

Kylix™

8

1 Use the Editor like a Web browser.

2 Press Ctrl and click to jump to the definition of the

identifier.

3 The Tooltip Symbol Insight displays declaration

information for any identifier when you pass the

mouse over it.

Within the Code Editor, you can also move between the

declaration of a procedure and its implementation by

pressing Ctrl+Shift+↑ or Ctrl+Shift+↓.

Table 2.1 CodeInsight tools

Tool How it works

Code Completion Type a class name followed

by a dot (.) to display a list

of properties, methods, and

events appropriate to the

class. Type the beginning of

an assignment statement and

press Ctrl+space to display a

list of valid values for the

variable. Type a procedure,

function, or method name to

bring up a list of arguments.

Code Parameters Type a method name and an

open parenthesis to display

the syntax for the method’s

arguments.

Code Templates Press Ctrl+J to see a list of

common programming

statements that you can insert

into your code. You can

create your own templates in

addition to the ones supplied

with Kylix.

Tooltip Expression

Evaluation

While your program has

paused during debugging,

point to any variable to

display its current value.

Tooltip Symbol Insight While editing code, point to

any identifier to display its

declaration.

When you type the dot in Button1. Kylix displays a list of

properties, methods, and events for the class. As you

type, the list automatically filters to the selection that

pertains to that class.

Select an item on the list and press Enter to add it to your

code.

To configure these tools, choose Tools|Editor Options

and click the CodeInsight tab.

Class Completion

Class Completion generates skeleton code for classes.

Place the cursor anywhere within a class declaration; then

press Ctrl+Shift+C, or right-click and select Complete

Class at Cursor. Kylix automatically adds private read and

1

2
3

Kylix™

9

write specifiers to the declarations for any properties that

require them, then creates skeleton code for all class

methods. You can also use Class Completion to fill in

class declarations for methods you’ve already

implemented.

To configure Class Completion, choose

Tools|Environment Options and click the Explorer tab.

Viewing and editing form code
Forms are a very visible part of most Kylix projects—they

are where you design the user interface of an application.

Normally, you design forms using Kylix's visual tools and

Kylix stores the forms in form files. Form files (.xfm)

describe each component in your form, including the

values of all persistent properties. To view and edit a

form file in the Code Editor, right-click the form and

select View as Text. To return to the graphic view of your

form, right-click and choose View as Form.

Use View As Text to view a text description of the form’s

attributes in the Code Editor.

You can save form files in either text (the default) or

binary format. Use the Environment Options dialog box

to designate which format to use for newly created forms.

Viewing code with the Code Explorer

Depending on which edition of Kylix you have, when

you open Kylix, the Code Explorer is docked to the left

of the Code Editor window. When a source file is open in

the Code Editor, you can use the Code Explorer to see a

structured table of contents for the code. The Code

Explorer contains a tree diagram showing the types,

classes, properties, methods, global variables, and

routines defined in your unit. It also shows the other

units listed in the uses clause.

Select an item in the Code Explorer and the cursor moves

to that item’s implementation in the Code Editor.

Move the cursor in the Code Editor and the highlight

moves to the appropriate item in the Code Explorer.

To search for a class, property, method, variable, or

routine, just type the first letter of its name.

Kylix™

10

Programming with Kylix

The following sections provide an overview of software

development with Kylix, including creating a project,

working with forms, writing code, and compiling,

debugging, deploying, and internationalizing programs.

Creating a project
A project is a collection of files that are either created at

design time or generated when you compile the project

source code. When you first start Kylix, a new project

opens. It automatically generates a project file

(Project1.dpr), unit file (Unit1.pas), and resource file

(Unit1.xfm), among others.

If a project is already open but you want to open a new

one, choose either File|New Application or File|New

and double-click the Application icon. File|New opens

the Object Repository, which provides additional forms,

frames, and modules as well as predesigned templates

such as dialog boxes to add to your project. To learn

more about the Object Repository, see �Adding items to

your projects: The Object Repository� on page 4.

When you start a project, you have to know what you

want to develop, such as an application or shared object.

Types of projects

All editions of Kylix support general-purpose Linux

programming for writing a variety of GUI applications,

shared objects, packages, and other programs. Some

editions support server applications such as distributed

applications, Web-based applications, and database

applications.

Database applications

For use in database applications, Kylix uses a new data

access technology, dbExpress. dbExpress is a collection

of drivers that applications use to access data in

databases. Kylix has drivers for four SQL databases,

including DB2, InterBase, MySQL, and Oracle,

depending on which edition you have.

To access the data, you can add dbExpress components

to data modules or forms. These components include a

connection component, which controls information you

need to connect to a database, and dataset components,

which represent the data fetched from the server.

Certain database connectivity and application tools are

not available in all editions of Kylix.

Web server applications

Web server applications extend the functionality of

existing Web servers. A Web server application receives

HTTP request messages from the Web server, performs

any actions requested in those messages, and formulates

responses that it passes back to the Web server. Any

operation that you can perform with a Kylix application

can be incorporated into a Web server application.

To create a Web server application, choose File|New

and double-click the Web Server Application icon in the

New Items dialog box. When the New Web Server

Application dialog box appears, select one of two Web

server application types: CGI stand-alone executable or

an Apache Shared Module (DSO). Either option creates a

new project with an empty Web module and is

configured to use Internet components.

The Web server application tools are not available in all

editions of Kylix.

Shared object libraries

Shared object libraries are compiled modules containing

routines that can be called by applications and by other

shared objects. A shared object library contains code or

resources typically used by more than one application.

Kylix™

11

Custom components

The components that come with Kylix are preinstalled

on the Component palette and offer a range of

functionality that should be sufficient for most of your

development needs. You could program with Kylix for

years without installing a new component, but you may

sometimes want to solve special problems or display

particular kinds of behavior that require custom

components. Custom components promote code reuse

and consistency across applications.

You can either install custom components from third-

party vendors or create your own. To create a new

component, choose Component|New Component to

display the New Component wizard.

Building the user interface

With Kylix, you first create a user interface (UI) by

selecting components from the Component palette and

placing them on the main form.

Placing components on a form

To place components on a form, either double-click the

component or click the component once and then click

the form where you want the component to appear.

Select the component and drag it to wherever you want

on the form.

Click a component on the Component palette.

Or choose a component from an alphabetical list.

Then click where you want to place it on the form.

Setting component properties

After you place components on a form, set their

properties and code their event handlers. Setting a

component�s properties changes the way a component

Kylix™

12

appears and behaves in your application. When a

component is selected on a form, its properties and

events are displayed in the Object Inspector.

1 Or use this drop-down list to select an object. Here,

Button1 is selected, and its properties are displayed.

2 Select a property and change its value in the right

column.

3 Click an ellipsis to open a dialog box where you can

change the properties of a helper object.

4 You can also click a plus sign to open a detail list.

You can select a component, or object, on the form by

clicking on it.

Many properties have simple values�such as names of

colors, True or False, and integers. For Boolean

properties, you can double-click the word to toggle

between True and False. Some properties have

associated property editors to set more complex values.

When you click on such a property value, you�ll see an

ellipsis. For some properties, such as size, enter a value.

Double-click here to change the value from True to False.

Click on the down arrow to select from a list of valid

values.

1

2

34

Kylix™

13

Click any ellipsis to display a property editor for that

property.

When more than one component is selected in the form,

the Object Inspector displays all properties that are

shared among the selected components.

Writing code
An integral part of any application is the code behind

each component. While Kylix�s RAD environment

provides most of the building blocks for you, such as

prepackaged visual and nonvisual components, you will

usually need to write event handlers and perhaps some

of your own classes. To help you with this task, you can

choose from Kylix�s CLX class library of nearly 750

objects. To view and edit your source code, see �Viewing

and editing code: The Code Editor and Code Explorer�

on page 7.

Writing event handlers

Your code may need to respond to events that might

occur to a component at runtime. An event is a link

between an occurrence in the system, such as clicking a

button, and a piece of code that responds to that

occurrence. The responding code is an event handler.

This code modifies property values and calls methods.

To view predefined event handlers for a component on

your form, select the component and, on the Object

Inspector, click the Events tab.

1 Here, Button 1 is selected and its type is displayed:

TButton. Click the Events tab in the Object Inspector

to see the events that Button component can handle.

2 Select an existing event handler from the drop down

list, or double-click in the value column and Kylix

generates skeleton code for a new event handler.

Using CLX classes

Kylix comes with a class library made up of objects,

some of which are also components or controls, that you

use when writing code. This class hierarchy, called the

Borland Component Library for Cross Platform (CLX),

includes objects that are visible at runtime�such as edit

1

2

Kylix™

14

controls, buttons, and other user interface elements�as

well as nonvisual controls like datasets and timers.

The diagram below shows some of the principal classes

that make up CLX.

Objects descended from TComponent have properties

and methods that allow them to be installed on the

Component palette and added to Kylix forms. Because

CLX components are hooked into the IDE, you can use

tools like the Form Designer to develop applications

quickly.

Components are highly encapsulated. For example,

buttons are preprogrammed to respond to mouse clicks

by firing OnClick events. If you use a CLX button

control, you don�t have to write code to handle

generated events when the button is clicked; you are

responsible only for the application logic that executes in

response to the click itself.

Most editions of Kylix come with complete CLX source

code. In addition to supplementing the online

documentation, CLX source code provides invaluable

examples of Object Pascal programming techniques.

Adding data modules

A data module is a type of form that contains nonvisual

components only. Nonvisual components can be placed

on ordinary forms alongside visual components. But if

you plan on reusing groups of database and system

objects, or if you want to isolate the parts of your

application that handle database connectivity and

business rules, data modules provide a convenient

organizational tool.

To create a data module, choose File|New and in the

Object Repository, double-click the Data Module icon.

Kylix opens an empty data module, which displays an

additional unit file for the module in the Code Editor,

and adds the module to the current project as a new

unit. Add nonvisual components to a data module in the

same way you would to a form.

Click a nonvisual component from the Component palette

and click in the data module to place the component.

When you reopen an existing data module, Kylix

displays its components.

Compiling and debugging projects
After you have written your code, you will need to

compile and debug your project. With Kylix, you can

either compile your project first and then separately

debug it, or you can compile and debug in one step

using the integrated debugger. To compile your

program with debug information, choose

Project|Options, click the Compiler page, and make sure

Debug information is checked.

Kylix uses an integrated debugger so that you can

control program execution, watch variables, and modify

data values. You can step through your code line by line,

Kylix™

15

examining the state of the program at each breakpoint.

To use the integrated debugger, choose Tools|Debugger

Options, click the General page, and make sure

Integrated debugging is checked.

You can begin a debugging session in the IDE by

choosing Run|Run or pressing F9.

Run button

Choose any of the debugging commands from the Run

menu. Some commands are also available on the toolbar.

With the integrated debugger, many debugging

windows are available, including Breakpoints, Call

Stack, Watches, Local Variables, Threads, Modules,

CPU, and Event Log. Display them by choosing

View|Debug Windows. Not all debugger views are

available in all editions of Kylix.

Once you set up your desktop as you like it for

debugging, you can save the settings as the debugging

or runtime desktop. This desktop layout will be used

whenever you are debugging any application.

Deploying programs

You can make your application available for others to

install and run by deploying it. To deploy an

application, create an installation package that includes

not just the required files, such as the executables, but

also any supporting files, such as shared object files,

initialization files, package files, and helper applications.

Internationalizing applications

Kylix offers several features for internationalizing and

localizing applications for different locales. The IDE and

CLX provide support for input method editors (IMEs)

and extended character sets. Once your application is

internationalized, you can create localized versions for

the different foreign markets into which you want to

distribute it.

Kylix provides a tool called resbind that extracts the

Borland resources from your application and creates a

shared object file that contains the resources. You can

then dynamically link the resources at runtime or let the

application check the environment variable on the local

system on which it is running. To get the maximum

benefit from these features, start thinking about

Kylix™

16

localization requirements as early as possible in the

development process.

Made in Borland®. Copyright © 2001 Borland Software Corporation. All rights
reserved. All Borland brand and product names are trademarks or registered
trademarks of Borland Software Corporation in the United States and other countries.
All other marks are the property of their respective owners. 11722.1

100 Enterprise Way
Scotts Valley, CA 95066-3249
www.borland.com | 831-431-1000

