
Creating Kylix
Database
Applications
A New Standard In Productivity

by Bill Todd, President, The Database Group, Inc.

dbExpress – A New Vision
Past attempts to create a common API for multiple

databases have all had one or more problems. Some have

been large, slow and difficult to deploy because they

tried to do too much. Others have offered a least

common denominator approach that denied developers

access to the specialized features of some databases.

Others have suffered from the complexity of writing

drivers making drivers either limited in functionality, slow

or buggy. Borland Kylix overcomes these problems by

combining dbExpress, a completely new approach to

providing a common API for many databases, with

Borland’s proven provide/resolve architecture for

managing the data editing and update process.

This paper examines the architecture of dbExpress and

the provide/resolve mechanism. Subsequent sections

describe the components that implement the Kylix data

access strategy and lead you through the steps to build a

simple database application demonstrating the power and

productivity they provide.

Table of Contents
dbExpress – A New Vision 1

DataCLX 3

MyBase – the Local XML Database 6

Building a Database Application 6

Kylix™

Kylix

2

The dbExpress Architecture

dbExpress was designed to meet the following five goals.

1. Minimize size and system resource use.

2. Maximize speed.

3. Provide platform independence.

4. Provide easy deployment.

5. Make driver development easy.

dbExpress drivers are small and fast because they provide

very limited functionality. A dbExpress driver implements

five interfaces that support fetching metadata, executing

SQL statements and stored procedures and returning a

read only unidirectional cursor to the result set. However,

when used with the DataSetProvider and ClientDataSet or

the SQLClientDataSet to implement Borland’s

provide/resolve data access strategy, dbExpress gives you

a full featured, high performance, high concurrency

system for working with data in SQL databases.

How Provide/Resolve Architecture Works

The provide/resolve architecture uses four components to

provide data access and editing. The first is the

SQLConnection component that provides a connection to

the dbExpress driver for the database you are using. Next

is one of the dbExpress dataset components that provides

data by executing a SQL SELECT statement or calling a

stored procedure. The third component is the

DataSetProvider and the fourth is the ClientDataSet. When

you open the ClientDataSet it requests data from the

DataSetProvider. The DataSetProvider opens the query or

stored procedure component, retrieves the records, closes

the query or stored procedure component and supplies

the records, with any required metadata, to the

ClientDataSet. The ClientDataSet holds the records in

memory while they are viewed or modified. As records

are added, deleted or updated, either in code or via the

user interface, the ClientDataSet logs all changes in

memory.

To update the database you call the ClientDataSet’s

ApplyUpdates method. ApplyUpdates transmits the

change log to the DataSetProvider. The provider starts a

transaction then creates and executes SQL statements to

apply the changes to the database. If all changes are

applied successfully the provider commits the transaction;

if not it rolls the transaction back. Database updates may

fail if, for example, a change violates a business rule

enforced by a trigger or if another user has changed a

record you need to update since you read the record. If

an error occurs the transaction is rolled back and the

ClientDataSet’s OnReconcileError event is fired giving you

control of how the error is handled.

Benefits of Provide/Resolve Architecture

Short Transaction Life

Long transactions force the database server to hold locks,

which reduces concurrency and consumes database

server resources. With provide/resolve architecture

transactions exist for a moment when records are read

and again when updates are applied. This dramatically

reduces resource consumption and improves concurrency

on a busy database server.

Make Any Rows Editable

Rows returned by multi-table joins, stored procedures or

read-only views cannot be edited directly in database

applications. The DataSetProvider gives you three tools to

handle these situations. If the records include fields from

a single table, for example records returned by a stored

procedure, the only problem is that the DataSetProvider

has no way to discover the name of the table. The

solution is to create an OnGetTableName event handler

for the DataSetProvider which returns the name of the

table.

A second possibility is a multi-table join where fields from

a single table must be updated. First, set the

ProviderFlags property of the individual fields to identify

the fields that should be updated. Then create an

Kylix

3

OnGetTableName event handler to return the table name,

and the provider will generate the SQL statements

automatically.

If you need to update multiple tables for each record add

a BeforeUpdateRecord event handler to the

DataSetProvider. In the event handler you can generate

the SQL statements for each table and execute them.

Instantaneous Sorting and Searching

Since the ClientDataSet holds records in memory, they

can be sorted quickly. If an in-memory sort is too slow

you can create indexes on the ClientDataSet’s data at

design time or runtime. These in-memory indexes let you

change the viewing order of records or locate records

virtually instantaneously without the overhead of

maintaining indexes in the database.

Automatic Summary Information

ClientDataSets will automatically maintain complex

summary calculations you define such as Sum(Price) –

Sum(Cost). You can group summary calculations by any

field or combination of fields to provide group totals. You

can also use the Min, Max, Count and Avg (average)

aggregates.

View Subsets of Data

Filter expressions using SQL WHERE syntax let you easily

display a subset of the record in a ClientDataSet without

the overhead of executing another query on the database

server.

Multiple Simultaneous Views of Data

The ability to clone a ClientDataSet’s cursor lets you view

different subsets of the data in a ClientDataSet

simultaneously. You can also view the same data sorted

differently.

Calculated Fields With No Overhead

You can add calculated fields to a ClientDataSet at design

time to make computed fields part of the in-memory

dataset. Since the calculations are performed using

compiled Object Pascal code, they are fast and can be far

more complex than computed columns in a SQL

statement or the calculations possible in triggers, yet they

impose no storage or computational burden on the

database server.

The Limitation That Isn’t There

Holding records in memory may seem like a limitation on

the number of records you can work with. However,

consider that traditional client/server application design

has always been to select small sets of records to

minimize network traffic and database server load. Even if

you need to work with an unusually large number of

records, remember that 10,000 records containing 100

bytes each requires only one megabyte of memory. In the

unlikely event that you need to work with a very large

number of records, the ClientDataSet and DataSetProvider

include properties and events that let you fetch a portion

of the records, edit them, remove them from memory,

and then fetch the next group of records.

Easy Deployment

An application using dbExpress requires just two shared

object libraries to function. The first is the dbExpress

driver, for example LIBSQLIB.SO in the case of

Interbase, and the second is LIBMIDAS.SO, the

ClientDataSet support library. This minimizes application

size and simplifies installation.

Easy Driver Creation

dbExpress drivers must implement just five interfaces that

are described in the on-line help. Borland also provides

the source code for the MySQL and Interbase drivers as

a model. This makes it easy for database vendors to

create robust high performance drivers. You can event

create your own if you are working with an unusual or

legacy database for which no driver is available.

Kylix

4

DataCLX
The cross-platform component library, CLX, includes two

groups of components that provide access to data. The

dbExpress components provide the basic connection and

data retrieval functions. The data access components

provide the ability to edit data using the provide/resolve

architecture.

The dbExpress Components

The dbExpress components include a SQLConnection

component, several dataset components and a

SQLMonitor component to provide easy access to data via

dbExpress. Like all CLX components the data access

components let you develop applications quickly by

choosing components from the component palette and

dropping them into your application.

SQLConnection

The SQLConnection component provides a database

connection for any number of dataset components. You

can use multiple SQLConnection components to connect

to many databases simultaneously. There are three ways

to define a connection to a database. You can use an

existing named connection, create a new named

connection or put the connection parameters in the

Params property of the SQLConnection component. To

use an existing named connection just set the

ConnectionName property.

 The dbExpress Connection Editor

To create a new named connection double click the

SQLConnection component to open the dbExpress

Connection Editor. The Connection Name list box on the

left shows any connections that have already been

defined. The Driver drop-down list lets you filter the

Connection Names to show only the connections for the

driver you select. The Connection Settings grid on the

right shows the connection settings for the selected

connection. All of the connections you create are stored

in the dbxconnections.conf file. The accompanying

screen shows the connections file with entries for a

MySQL connection and an Interbase connection.

The connections file

Kylix

5

After creating a named connection you can assign it to

the SQLConnection component’s ConnectionName

property. If you use named connections, you will have to

distribute a connections file with your application or

locate an exiting connections file on the target computer

and add your connection to it.

An alternative solution is to begin by setting the

DriverName property of the SQLConnection component.

The drop-down list for the DriverName property lists all

of the drivers installed on your system. The driver

information is contained in the dbxdrivers.conf file.

Setting the DriverName property will also set the

LibraryName and VendorLib properties using information

from the drivers file. LibraryName contains the name of

the dbExpress driver shared object file and VendorLib

contains the name of the database vendor’s client library

file.

The SQLConnection component’s Params property

Enter the connection parameters from the Connections

Editor in the SQLConnection component’s Params

property as shown in the preceding screen. Using this

method the connection information is contained entirely

within your application. If you want application users to

be able to change any connection parameters you can

store them in the application’s own configuration file and

provide a way to edit the file either within your

application or with a separate configuration program.

This makes each application totally self-contained.

The SQLConnection component also provides the

StartTransaction, Commit and Rollback methods for

explicit transaction control. If you need to execute SQL

statements that do not return a result set, you can do so

through the SQLConnection component using the Execute

or ExecuteDirect methods. No dataset component is

required. If you need access to the metadata of the

database you are working with, SQLConnection provides

the GetTableNames, GetFieldNames and GetIndexNames

methods.

The Dataset Components

dbExpress provides four dataset components;

SQLDataSet, SQLQuery, SQLStoredProc and SQLTable.

SQLDataSet is the component of choice for any new

application you write. By setting its CommandType

property you can use it to execute SQL statements, call a

stored procedure or access all of the rows and columns in

a table. The other dataset components are provided

mainly to make it easy to convert Windows applications

that use the Borland Database Engine to dbExpress.

To use a SQLDataSet set its SQLConnection property to

the SQLConnection component you want to use. Next, set

the CommandType property to ctQuery, ctStoredProc or

ctTable. Most often you will use the default value of

ctQuery. The value of the CommandText property

depends on the value of CommandType. If

CommandType is ctQuery, CommandText contains the

SQL statement you want to execute. If CommandType is

ctStoredProc, CommandText is the name of the stored

procedure. If CommandType is ctTable, CommandText is

the name of the table. You use the Params property to

supply parameters for a parameterized query or a stored

procedure and the DataSource property to link the

SQLDataSet to another dataset component in a master-

detail relationship.

Kylix

6

The SQLDataSet provides a read only unidirectional

cursor only. If this is the only access you need, for

example for printing a report, you can use the

SQLDataSet by itself or with a DataSource component

depending on the requirements of your reporting tool. If

you need to scroll back and forth through the records or

edit the data, just add a DataSetProvider and

ClientDataSet as described later in this paper.

If you need more detailed metadata information than the

SQLConnection methods provide, use the SetSchemaInfo

method of a SQLDataSet component. SetSchemaInfo takes

three parameters, SchemaType, SchemaObject and

SchemaPattern. SchemaType can be either stNone,

stTables, stSysTables, stProcedures, stColumns,

stProcedureParams or stIndexes. This parameter indicates

the type of information that the SQLDataSet will contain

when it is opened. The schema type is set to stNone

when you are retrieving data from a table using a SQL

statement or stored procedure. Each of the other schema

types creates a dataset with a structure appropriate for the

information being returned. SchemaObject is the name of

the stored procedure or table when a stored procedure or

table name is required. Schema pattern lets you provide a

SQL pattern that will filter the result set. For example, if

SchemaType is stTables and SchemaPattern is ‘EMP%’ the

dataset will only contain tables that start with EMP.

SQLMonitor

The last dbExpress component, the SQLMonitor, is

provided to help you debug your application.

SQLMonitor monitors all of the SQL statements passed

between a SQLConnection component and the database

server it is connected to. The SQL statements can be

logged to a file or you can write event handlers to

process them in any way you wish.

The Data Access Components.

DataSetProvider

A DataSetProvider is linked to one of the dbExpress

dataset components through its DataSet property. The

DataSetProvider supplies data to the ClientDataSet on

request and generates the SQL DML statements to update

the database from the change log supplied by the

ClientDataSet.

ClientDataSet

The ClientDataSet is connected to a DataSetProvider via

its ProviderName property. It receives data from its

DataSetProvider, buffers the data in memory, logs all

changes to the data and sends the change log to the

DataSetProvider when the ClientDataSet’s ApplyUpdates

method is called.

DataSource

A DataSource component is connected to a dataset via its

DataSet property. The dataset may be a ClientDataSet or

one of the dbExpress dataset components. The

DataSource provides common functionality and a

connection point for the data aware user interface

components used to display and edit data interactively. It

is also used to link dataset components to model one-to-

many or one-to-one relationships.

SQLClientDataSet

This component is a ClientDataSet with a built-in

DataSetProvider and SQLDataSet. Just connect it to an

SQLConnection component; set the DataSet,

CommandType and CommandText properties and you

are ready to go. While SQLClientDataSet hides some of

the less commonly used features of the SQLDataSet and

DataSetProvider components it saves development time

and provides all of the functionality you normally need

for accessing data from a single table.

Kylix

7

MyBase – The Local XML Database
The data contained in a ClientDataSet can be saved to

and loaded from a disk file in either binary or XML

format. This allows a ClientDataSet to function as a single

user relational database system. The only limitation is that

the data must fit in memory while it is being accessed.

This capability can be used in many ways. It lets you

build briefcase model applications where a user with a

notebook computer selects data from the database server

and saves it locally. The user then disconnects from the

network; inserts, deletes and updates records; saves the

data and change log; reconnects to the network and

applies the updates to the database. You can also use this

capability to import data from, or export data to, XML.

Finally, you can use a ClientDataSet as a high

performance temporary in-memory table that can be

created and destroyed on-the-fly.

Building a Database Application
The real power of dbExpress and DataCLX is the speed

with which you can build complex database applications.

Consider a simple application that lets users see and edit

a one-to-many relationship between departments and

employees and see a list of all employees in descending

order by job grade. The following screen shows the data

module that contains the required components. The

following paragraphs describe the steps you would take

to build this application.

Start with a new Kylix project then choose File | New

from the menu and double click Data Module in the

Object Repository to add a data module to your project.

The sample data module

The Database Connection

After dropping a SQLConnection component in the upper

left corner of the data module, right click and choose Edit

Connection Properties. Add a new connection, choose

the driver for your database, set the path to the database

and set any other properties you need to change from

their default values. Set the Name property to

sconEmployee.

Add the DataSet Components

Add two SQLDataSet components to the data module. Set

the SQLConnection property of both to sconEmployee.

Set the Name property of the first to sdsDepatement and

its SQL property to SELECT * FROM DEPARTMENT. Add a

DataSource component, set it Name to srcDeptLink and

set its DataSet property to sdsDepartment to connect it to

the sdsDepartment SQLDataSet. Select the second

SQLDataSet, set its name to sdsEmployee and set its SQL

property to SELECT * FROM EMPLOYEE WHERE

DEPT_NO = :DEPT_NO. Next, set its DataSource property

to srcDeptLink. This tells the sdsEmployee dataset to get

the value of the DEPT_NO parameter from the DEPT_NO

field of the current record in sdsDepartment.

Add a single DataSetProvider component, set its name to

provDepartment and its DataSet to sdsDepartment. Add

Kylix

8

two ClientDataSets. Name the first cdsDepartment and the

second cdsEmployee. Select cdsDepartment and set its

ProviderName to provDepartment. Right click

cdsDepartment, choose Fields Editor, then right click in

the Fields Editor and choose Add All Fields. Note that the

last field is named sdsEmployee. It is a nested dataset

field and it contains the employee records for the

department record. Now select cdsEmployee and set its

DataSetField property to sdsEmployee so it will displsy

the data from the sdsEmployee field.

Next, add two DataSource components to the data

module and name them srcDepartment and srcEmployee.

Set the DataSet property of srcDepartment to

cdsDepartment and the DataSet property of srcEmployee

to cdsEmployee. All of the components for the one-to-

many relationship between Department and Employee

are now in place.

Viewing All Employees

The next step is to add the components that will provide

a view of all employee records. Drop a SQLClientDataSet

on the data module and set its Name property to

scdsEmpAll, its DBConnection property to sconEmployee

and its CommandText property to SELECT * FROM

EMPLOYEE ORDER BY JOB_GRADE DESC. Since users

will not be able to edit this view of the data set the

ReadOnly property to true.

Add a DataSource component, name it srcEmpAll and set

its DataSet property to scdsEmpAll. That’s all there is to it.

Since this dataset is not linked to another you can take

advantage of the SQLClientDataSet which combines a

SQLDataSet, DataSetProvider and ClientDataSet in a single

component.

Handling Errors

The easiest way to handle database update errors is to

use the Reconcile Error Dialog from the Object

Repository. Choose File | New from the menu, click the

Dialogs tab then double click the Reconcile Error Dialog

to add it to your project. Click the Save button on the

toolbar and save the new unit file as RecErrF.pas.

Adding the Code

Click an open area of the data module then click the

Events tab of the Object Inspector. Double click the edit

box for the OnCreate event to create the shell of the

event handler procedure and add the following three

lines of code to open the three ClientDataSets:

cdsDepartment.Open;

cdsEmployee.Open;

scdsEmpAll.Open;

Choose File | Use Unit from the menu and select the

RecErrF unit. This lets you call the Reconcile Error

Dialog’s methods. Select the cdsDepartment ClientDataSet

and double client the edit area of the OnReconcileError

event. Add the following line to the event handler

procedure:

Action := HandleReconcileError(DataSet, UpdateKind,

E);

Repeat this process for the cdsEmployee ClientDataSet.

This code will call the Reconcile Error Dialog if an error

occurs when applying updates to the database.

Building the User Interface

The main form

Kylix

9

To build the user interface shown above begin by

dropping a PageControl on the form and setting its Align

property to alClient. Right click the PageControl and

choose New Page twice to add two TabSheets to the

PageControl. Select the first TabSheet and set its Caption

property to Employees By Dept. Select the second and

set its Caption to All Employees.

Return to the Employees By Dept TabSheet and add a

Button, a DBNavigator, a DBGrid, another DBNavigator

and a second DBGrid. Choose File | Use Unit from the

grid and select the data module. Click the first

DBNavigator to select it then shift+click the first DBGrid

so both are selected. In the Object Inspector set the

DataSource properties to srcDepartment. Select the

second DBNavigator and DBGrid and set their

DataSource properties to srcEmployee.

Adding the Apply Updates Code

Select the Button and set its Caption property to Apply

Updates. Double click the button to create its OnClick

event handler and add the following code.

with dmMain.cdsDepartment do

begin

 if ChangeCount > 0 then

 ApplyUpdates(0);

end;

This code checks the ClientDataSet’s ChangeCount

property to see if there are any changes to apply to the

database. If there are, the ClientDataSet’s ApplyUpdates

method is called. The parameter indicates the number of

errors that are allowed before the update process is

halted.

It is very important to note that you do not need to call

the ApplyUpdates method of cdsEmployee. Since the

employee records are embedded in the department

ClientDataSet, its DataSetProvider handles updates to both

tables. It also handles referential integrity correctly by

applying inserts, first to the department table and second

to the employee table, while applying deletes, first to the

employee table and second to the department table.

What Does It Mean?

The significant thing about this application is not what it

does but rather that a moderately experienced Kylix

developer can build a complete client/server database

application in less than 30 minutes. This is a dramatic

increase in programmer productivity for Linux.

Bill Todd is President of The Database Group, Inc., a

database consulting and development firm based near

Phoenix. He is co-author of four database programming

books, the author of over 80 articles, and is a member of

Team Borland, a developer group that provides technical

support on the Borland Internet newsgroups. He is a

frequent speaker at Borland Developer Conferences in

the U.S. and Europe. Bill is also a nationally known

trainer and has taught Delphi programming classes across

the country and overseas. He can be reached at

billtodd_az@qwest.net

Copyright © 2001 Borland Software Corporation. All rights reserved. All Borland brand
and product names are trademarks or registered trademarks of Borland Software
Corporation. Java is a trademark or registered trademark of Sun Microsystems, Inc. in
the U.S. and other countries. CORBA is a trademark or registered trademark of Object
Management Group, Inc. in the U.S. and other countries. 11812

100 Enterprise Way
Scotts Valley, CA 95066-3249
www.borland.com | 831-431-1000

