
Borland® Kylix™ 3
versus
Linux® GCC
Development
A productivity and maintainability
comparison

by William Roetzheim and John Amacker,

the Cost Xpert Group

for Borland Software Group

September 2002

Introduction
This paper utilizes parametric modeling techniques to perform

side-by-side comparisons of software development using

Borland® Kylix™ 3 versus Linux® g++, the name sometimes

used for the GNU C Compiler (GCC) when it is being used to

compile C++ programs. We examine typical embedded projects,

server-side Internet projects, and client-server applications, then

look at the relative efficiency of the two development

environments in terms of effort, cost, schedule, quality, and life-

cycle costs. In all dimensions of this comparison, it is established

that Kylix 3 outperforms g++, often with an improvement of

two-fold or more.

Background

According to the IDC report “Worldwide Linux Operating

Environments Forecast and Analysis, 2002-2006: A Market in

Transition” (July 2002, Gillen, Kajita, Kusnetzky, Brewer,

Hingley, Lee, Manfrediz), “IDC expects spending on Linux

operating environments to increase over the next five years from

$80 million in 2001 to $280 million in 2006, a 28% compound

annual growth rate (CAGR).” In the same report, IDC notes,

“Despite the unconventional way Linux is bought and sold, it

has become a mainstream choice for many infrastructure

workloads particularly because the software is available either

freely on the network or as a low-cost packaged product that can

be deployed on low-cost, high-volume systems. Furthermore,

Linux is often packaged with other open source software such as

Samba for file/print services, Apache for Web Services, and
Contents
Introduction 1

Approach 3

Results 3

Effort and cost 4

Development time 5

Maintenance effort
following deployment 7

Technical documentation
produced during development 9

Conclusions 10

Kylix™

2

 MySQL™ or PostgreSQL for data management, which

makes it a highly functional and cost-effective

environment.” Current development in a Linux

environment is primarily accomplished using the Linux

GCC (C language compiler), often with a front-end

that allows developers to work with different higher-

level languages. One common approach is to use g++,

a C++ front-end to GCC.

GCC also can compile programs written in C, C++,

Objective C,® Ada 95, Fortran 77, and Pascal. GCC

refers to the compilation system as a whole, and more

specifically to the language-independent part of the

compiler, which is also known as the back-end. g++

builds object code directly from C++ program source,

i.e. there is no intermediate version of C. g++ takes

advantage of most of the GCC extension to the ANSI

C standard. For more information on GCC and g++

please visit the GNU official site: (www.gnu.ai.mit.edu).

Borland has recently introduced Kylix 3 for Linux

development. Kylix 3 supports both C++ and Borland

Delphi™ language programming and provides an ideal

set of development tools, both for implementation and

for testing. In the Windows® platform, Delphi, Borland

C++Builder® and similar high-productivity

development environments have drastically improved

the productivity of software developers, resulting in

faster time-to-market and lower cost development. The

compatibility of Kylix 3 with C++Builder 6 and Delphi

6 enables cross-platform Linux and Windows

development.

All three products include CLX™ (Borland®

Component Library for Cross-platform), a library that

simplifies and standardizes reuse of code objects. In

total, CLX features more than 190 reusable software

building blocks that simplify development greatly. Kylix

3 also includes an advanced code editor, CodeInsight,™

a fully integrated graphical debugger, and a 32 bit

optimizing C/C++ code compiler. In this paper, we explore

productivity rates for Kylix 3 vs. g++ development and quantify

typical impacts on development cost and schedule.

Objective

We identified three classes of software development projects

that we felt were typical projects applicable to the Linux

environment. These were:

• An embedded application;

• A Web server application; and

• A client-server application.

We set out to quantify the difference in developing these three

representative applications using Kylix 3 versus g++. For each

project, we wished to explore statistically significant differences

in the areas of:

1. Effort/cost;

2. Development time;

3. Maintenance effort following deployment; and

4. Documentation needed to be created during development.

Finally, we wished to determine whether the results we

discovered would vary significantly in relation to the size of the

development project. We therefore repeated our work using

three client-server projects that differed only with respect to the

software application’s size.

Kylix™

3

Approach
Kylix 3 is too new to have an extensive experience base

of metric information from deployed projects. Even

for well-established development platforms, data for

identical projects developed using different tools is

virtually impossible to obtain. Luckily, there is an

approach to accomplish our objectives. Cost Xpert

(www.costxpert.com) is a software project modeling

tool that incorporates more than 70 parametric models

to accurately model and predict software project

behavior to better than 10% of actual results. Version

3.2 of this tool supports Kylix and g++ projects. By

defining the exact same project exclusive of the

development tools used, then modeling the project

outcomes, it is possible to compare predicted outcomes

for these two environments when applied to the same

project. Differences greater than 10% may be

considered to be statistically significant.

The project definitions used for the initial analysis are

described in the following paragraphs.

• All projects were defined based on a development

team with three or more years experience in the

application domain; 12 months experience with the

programming language (either C++ or Object

Pascal); at an average hourly rate of $100 per hour.

The development was assumed to be performed at

a single site with a LAN installed.

• The sample embedded application consists of 2

control classes, 3 interface classes, 10 other classes,

3 data stores, 75 class methods/functions, and

1,500 additional lines of code to handle

miscellaneous requirements not otherwise covered.

• The sample Web application consists of 2 file-

oriented external interfaces, 20 tables in a database,

10 hard copy management reports, 10 static screens,

10 screens with dynamic update from the database, and 10

interactive screens where the user interacts dynamically with

the system. In total, the application consists of 207 Internet

Points worth of delivered functionality.

• The sample client-server application consists of 2 file-

oriented external interfaces, 20 tables in a database, 10 hard

copy management reports, and 20 screens. In total, the

application consists of 344 Function Points worth of

delivered functionality.

To test the impact of project size on the results, we defined the

client-server project described above as a medium sized client-

server project. We defined small and large client-server projects

as follows:

• The small client-server project consists of 1 file-oriented

external interface, 3 tables in a database, 2 hard copy

management reports, and 4 screens. We felt that this project

would represent a very small project, for example, a small

support application. In total, the application consists of 63

Function Points worth of delivered functionality.

• The large client-server project consists of 25 external

interfaces, 5 external queries or messages, 200 tables in a

database, 40 hard copy reports, and 90 screens. In total, this

application consists of 2755 Function Points worth of

delivered functionality.

Now, let’s look at the results of our analysis.

Results
In this section we’ll look at our results across each dimension

of study:

1. Effort/cost;

2. Development time;

3. Maintenance effort following deployment; and

4. Documentation needed to be created during development.

http://www.costxpert.com/

Kylix™

4

Effort and cost
The following figure shows the results of our effort analysis for building the three categories of systems using Kylix 3 versus g++.

In all three cases, Kylix 3 resulted in a substantial reduction in development effort. For the Web and client-server applications, the

Kylix 3 effort was about 42% of the effort required for an equivalent deployment using g++. Even in an embedded environment

where g++ is presumably better suited, the Kylix 3 development could be accomplished in roughly half the effort required for the

g++ environment.

Effort Comparison

0

10

20

30

40

50

60

Embedded Web Server Client-Server

Project Type

P
e

rs
o

n
-M

o
n

th
s

g++

Kylix 3

Of course, the costs follow a similar pattern as shown in the following table.

Cost comparison

Project g++ Kylix 3 $ Savings

Embedded $323,816 $180,685 $143,131

Web Server $778,286 $314,964 $463,322

Client-Server $549,055 $235,715 $313,340

Kylix™

5

The next table shows the results for our analysis of three different sized embedded projects:

Cost comparison–differently sized client-server projects

Project g++ Kylix 3 $ Savings

Client-Server–Small $91,840 $39,428 $52,412

Client-Server–Medium $549,055 $235,715 $313,340

Client-Server–Large $2,678,923 $1,811,090 $867,833

As shown in the following figure, Kylix 3 saves money on all client-server projects relative to g++ development, with small

projects approximately 40% the cost and large projects roughly 68% of the g++ cost.

Kylix 3 % of g++ Development Costs

0%

10%

20%

30%

40%

50%

60%

70%

80%

Client-Server - Small Client-Server -
Medium

Client-Server - Large

%
 R

el
at

iv
e

to
 g

+
+

Development time
Because Kylix 3 development requires significantly less effort than equivalent g++ development effort, we would expect that

Kylix 3 development projects could deliver the completed application to market faster than equivalent g++. In fact, as shown in

the following table and figure, Kylix 3 development is consistently and significantly faster than g++ development.

Kylix™

Schedule comparison

Project g++ Kylix 3 Time Savings

Embedded 6.8 months 4.5 months 2.3 months

Web Server 12.1 months 6.7 months 5.4 months

Client-Server 9 months 5.4 months 3.6 months
6

 The table below highlights that this relationship extends to all three sizes of embedded development projects studied:

Schedule comparison–differently sized client-server projects

Project g++ Kylix 3 Time Savings

Client-Server–Small 3 months 2.1 months 0.9 months

Client-Server–Medium 9 months 5.4 months 3.6 months

Client-Server–Large 19.8 months 14.6 months 5.2 months

Schedule Comparison

0

2

4

6

8

10

12

14

Embedded Web Server Client-Server

Project Type

C
al

en
d

ar
 M

o
n

th
s

g++

Kylix 3

Kylix™

7

Maintenance effort following deployment
Of course, development cost only tells a portion of the story. We can appreciate the possibility of saving money during

development, but the resulting reduction in software quality will increase maintenance costs downstream. The table and figure

below show the projected three-year maintenance costs for our reference projects. As can be clearly seen from the figure, Kylix

development not only saves development time and effort, but also reduces on-going software maintenance costs substantially.

Maintenance cost comparison

Project g++ Kylix 3 $ Savings

Embedded $206,903 $115,449 $91,454

Web Server $477,999 $201,246 $276,753

Client-Server $350,819 $150.610 $200,206

Maintenance Cost Comparison

$0

$100,000

$200,000

$300,000

$400,000

$500,000

$600,000

Embedded Web Server Client Server

Project Type

3
 Y

e
a

r
M

a
in

te
n

a
n

c
e

 C
o

s
ts

g++

Kylix

The following table shows that this relationship also applies across all three sizes of client-server development projects.

Maintenance cost comparison–differently sized client-server projects

Project g++ Kylix 3 $ Savings

Client-Server–Small $58,860 $25,913 $33,667

Client-Server–Medium $350,819 $150.610 $200,206

Client-Server–Large $3,139,764 $1,347,935 $1,791,829

Kylix™

8

The next figure shows that the reduced maintenance effort is at least partially due to a projected higher quality for Kylix 3

applications relative to g++ applications. The number of residual defects that will be discovered in year one following the models

project deployment signifies the higher quality of Kylix 3 applications.

Maintenance Cost Comparison

$0

$100,000

$200,000

$300,000

$400,000

$500,000

$600,000

Embedded Web Server Client Server

Project Type

3
Y

ea
r

M
ai

n
te

n
an

ce
 C

o
st

s

g++
Kylix

The subsequent table shows the exact number of residual defects that may occur:

Residual defect comparison

Project g++ Kylix 3 Defect Savings

Embedded 5 3 2

Web Server 102 46 56

Client-Server 160 68 92

Once again, as shown in the table below, this relationship extends to all sizes of client-server development.

Residual defect comparison–differently sized client-server projects

Project g++ Kylix 3 Defect Savings

Client-Server–Small 26 12 14

Client-Server–Medium 160 68 92

Client-Server–Large 1423 610 813

Kylix™

9

Technical documentation produced during development
Finally, we looked at the optimum number of pages of technical documentation that the models predict should be produced

during development. This documentation is necessary to ensure that the development is successful and to describe the inner

details of the software for the maintenance programmers. We would expect that the reduced effort associated with Kylix 3

development, combined with the improved development environment itself, would result in a reduced requirement for technical

documentation. In fact, this expectation proved to be accurate as shown on the table and Technical Documentation Comparison

graph below.

Technical document comparison

Project g++ Kylix 3 # Pages Savings

Embedded 766 512 254

Web Server 711 372 339

Client-Server 346 178 168

Technical Document Comparison

0

100

200

300

400

500

600

700

800

900

Embedded Web Server Client-Server

Project Type

T
o

ta
l D

o
cu

m
en

t
P

ag
es

P

ro
d

u
ce

d

 g++

 Kylix

The documentation needed for specific size client-server projects is as follows:

Technical document comparison–differently sized client-server projects

Project g++ Kylix 3 # Pages Savings

Client-Server–Small 98 65 33

Client-Server–Medium 346 178 168

Client-Server–Large 2,299 1,084 1,215

Kylix™

10

Conclusions
There is no question that Kylix 3 offers dramatic

improvement in the way software is developed for the

Linux platform, across all application domains and for

all project sizes that we tested. We observed clear

improvements across every metric measured, including

effort, cost, time, quality, and life-cycle costs. For the

Web and client-server applications, the Kylix 3 effort

was about 42% of the effort required for an equivalent

deployment using g++. Even in embedded

environments, Kylix 3 development could be

accomplished in roughly half the effort required for the

g++ environment.

This reduction in effort will translate into direct

development cost savings. In terms of development

time, Kylix 3 achieves better than 40% time-to-market

for Web and client-server projects and better than 33%

for embedded projects over g++. Finally, when

reviewing quality measures and life-cycle cost, we

found that Kylix 3 achieves improvements of between

40% and 58% in terms of residual defects and 3-year

maintenance costs. These improvements will markedly

increase client/user satisfaction and lower the cost of

owning/maintaining applications.

Parametric modeling in more detail
Parametric modeling uses roughly 100 input parameters that

define a project and more than 70 models of project behavior to

forecast the project outcomes. This technique is often used in

estimating software project costs and schedules and in preparing

optimum project plans. A free sample tool can be downloaded

from www.costxpert.com.

Validity of parametric modeling
Parametric modeling of software cost, schedule, and so on has

been in existence since the early 1980s. It is employed by most

major organizations to help estimate and manage software

development projects. The Standish Group, Software

Productivity Research, and others have found that the use of

these techniques double the probability of projects reaching a

successful conclusion. The parametric models used in this study

have a design goal of a plus or minus 10% accuracy and are

currently achieving an accuracy of (plus or minus) 7% in the

field.

Kylix™ 3 productivity is built in from the ground up
Kylix 3 introduces to the Linux operating system a high

performance C++ and Delphi language development solution

for rapid e-business development. Kylix 3 combines several

development tools into a visual development environment that

heretofore was primarily the domain of Windows developers.

Kylix 3 includes CLX, a component library that simplifies and

standardizes reuse of code objects. In total, CLX features more

than 190 reusable software building blocks that simplify

development greatly. Kylix 3 also includes an advanced code

editor, CodeInsight, a fully integrated graphical debugger, and a

32 bit optimizing C/C++ code compiler.

http://www.costxpert.com/

Kylix™

Author Biography

William Roetzheim is the Chief Executive Officer of

the Cost Xpert Group, Inc. Cost Xpert Group, Inc. is a

leader in the development of parametric software cost

estimating tools (www.costxpert.com). Mr. Roetzheim

has written 15 books, more than 100 articles, and is

internationally recognized as an expert on software cost

estimating.

John Amacker is a Senior Cost Consultant with the

Cost Xpert Group. Mr. Amacker specializes in

independent software cost estimation/analysis and

software cost estimation training.

Made in Borland®. Copyright © 2002 Borland Software Corporation. All rights reserved. All
Borland brand and product names are trademarks or registered trademarks of Borland Software
Corporation in the United States and other countries. Linux is a registered trademark of Linus
Torvalds. All other marks are the property of their respective owners. Corporate Headquarters:
100 Enterprise Way, Scotts Valley, CA 95066-3249 • 831-431-1000 • www.borland.com • Offices
in: Australia, Brazil, Canada, China, Czech Republic, France, Germany, Hong Kong, Hungary,
India, Ireland, Italy, Japan, Korea, the Netherlands, New Zealand, Russia, Singapore, Spain,
Sweden, Taiwan, the United Kingdom, and the United States. • 13515
100 Enterprise Way
Scotts Valley, CA 95066-3249
www.borland.com | 831-431-1000
11

http://www.borland.com/
http://www.costxpert.com/

	Introduction
	Background
	Objective

	Approach
	Results
	Effort and cost
	Cost comparison
	Cost comparison–differently sized client-server p

	Development time
	Schedule comparison
	Schedule comparison–differently sized client-serv

	Maintenance effort following deployment
	Maintenance cost comparison
	Maintenance cost comparison–differently sized cli
	Residual defect comparison
	Residual defect comparison–differently sized clie

	Technical documentation produced during development
	Technical document comparison
	Technical document comparison–differently sized c

	Conclusions
	
	Parametric modeling in more detail
	Validity of parametric modeling
	Kylix™ 3 productivity is built in from the ground�

	Author Biography

