
Internet
Programming
with Delphi
by Marco Cantù
(http://www.marcocantu.com)

Table of Contents
The Challenges of Internet Programming 1

Where does Delphi Fit?... 2

Core TCP/IP Support... 3

Client Side Protocols Support.. 4

Server Side Protocols Support ... 4

Client Side Web Support... 5

Server Side Web Development .. 6

Generating HTML pages .. 6

The WebBroker Framework .. 7

Supporting Microsoft's Windows DNA architecture 9

InternetExpress: XML, ECMAScript, and DHTML...................10

Third-Party Web Server Extensions ...13

Delphi in Action on the Internet...13

Conclusion: The Delphi Advantage..14

Borland Delphi is known to be a great environment for the

development of stand-alone and client-server applications on the

Microsoft Windows platform. Its virtues range from full OOP

support to visual development, in a unique combination of

power and ease. However, the new frontier of development is

now Internet programming. What has Delphi got to offer in this

new context? Which are the features you can rely upon to build

great Internet applications with Delphi? That’s what this paper

intends to reveal. We’ll see that Delphi can be used:

• For direct socket and TCP/IP programming;

• In conjunction with third-party components that implement

the most common Internet protocols, on the client or the

server side;

• To produce HTML pages on the server side, with the

WebBroker and Internet Express architectures;

• As well as to work with Microsoft’s core technologies,

including MTS, COM, ASP, and ActiveX.

The Challenges of Internet
Programming
Internet programming poses new challenges to traditional

developer environments and to the programmers using them.

There are issues related with the implementation of standard

protocols, the use of multiple platforms (Microsoft Windows

accounts for most of the client computers on the Internet but

only a fraction of the servers), and the licensing schemes of

some RDBMS systems.
Delphi

http://www.marcocantu.com/

Delphi

2

Most of the problems, however, relate with HTTP development:

Turning existing Windows applications into applications running

within a Web browser is more complex than it might seem at

first sight. The Web is stateless, the development of user

interfaces can be quite an issue, and you invariably have to

consider the incompatibilities of the most widespread browsers.

A new platform specifically aimed at areas of Internet

programming (typically the HTTP world) has emerged. These

environments favor server side development, often also allowing

the inclusion of database information within web pages. A

common solution is to write HTML pages with special

“scripting” tags included, which are going to be expanded by an

engine on the server. Interesting for small projects, most of

these technologies have limited scripting power, and force you to

mix HTML code and scripting code, and GUI scripting code

with database oriented code. On larger applications, this lack of

separation among the different areas of a program is considered

to be far from a good architecture.

Moreover, Microsoft’s DNA is going to be replaced by the new

Microsoft dotNET (or “.NET”) architecture – a new name and

approach that seems to imply that the previous architecture had

indeed serious limitations. DotNET is apparently going to be

more “open” and stresses a lot the importance of XML,

including pushing the support for the SOAP (Simple Object

Access Protocol) invocation protocol. Another key element of

dotNET is that COM is apparently going to be phased out (not a

nice idea for people who’ve invested in the approach Microsoft

was pushing yesterday).

Even with the advent of dotNet, Microsoft’s DNA architecture,

based on ASP for HTML scripting and COM/MTS/COM+ for

database manipulation, offers a higher perspective, but is limited

to the Windows platform and Microsoft’s own IIS Web server,

tends to work primarily with the Internet Explorer browser. The

current incarnation of DNA suffers from several limitations,

including DCOM unfriendliness with firewalls, complex

configuration and administration, some tie-in with Microsoft’s

technologies, databases included, and limited scalability. Also,

the overall architecture, with the separation of many layers

partial with status and partially stateless, seems to be still limited

for the challenges of the Internet.

Where does Delphi Fit?
With this rather complex situation going on, where does a

“traditional” development platform like Delphi fit? The goal of

Delphi in the Internet age is to bring the some power, flexibility,

ease of use, and database support.

• The power of Delphi comes from the fully compiled code,

different from many script-based technologies, and from its

fully object-oriented architecture (which is not an after

thought, but has been the foundation of the language and

its libraries since version 1.0). Delphi natively compiled

applications are simple to deploy, as they are generally made

of a single self-contained executable code (with no extra

runtime libraries and custom component files). Actually,

dividing the single EXE in multiple packages is a useful

option that is offered by Delphi, which programmers can

fine-tune to choose the best deployment solution.

• The flexibility of Delphi comes from a support not limited

to HTTP but open to most Internet protocols, as the

development environment allows you to write lower level

code to support new protocols, as the developers of many

native third-party components have done.

• The ease of use of Delphi comes from the component-

based environment. Writing a mail client (eventually bound

to a web page) simply implies adding a couple of

components to your program, setting a few properties, and

writing very little code. Some of the samples found in

Delphi and the third party components are basically full-

featured email programs!

With the InternetExpress technology of Delphi 5, the ease-

of-use has been extended to allow the visual development

of HTML front ends based on data sets.

• Database and client/server support has always been one of

the strongest features of Delphi and client/server

architectures remain the core of most Web applications and

Internet sites. Actually, if you’ve built your Delphi

Delphi

3

applications by separating the user interface from the back

end (typically using Data Modules for the latter) you are

ready to plug in a new user interface to your existing

“business rules” code.

This is particularly true for multi-tier MIDAS applications,

which separate the business logic and the user interface in

two separate applications, running on the client and

application server computers. Using the InternetExpress

technology, as we’ll see, you can simply build a new front

end for a Web server application, and make it available to

the client browsers.

Leveraging your existing Delphi code and allowing you to build

Windows and browsers based front end for the same core

application, are two key reasons to adopt Delphi as your Internet

development platform. But they are not the only reasons, as

other areas of Internet development are equally served by the

technologies included in Delphi.

Finally, with the forthcoming Kylix project (see

http://www.borland.com/linux), Borland are providing a

“Delphi for Linux”, allowing your server side applications to run

equally well on Microsoft Windows or Linux operating systems.

Delphi will be able to leverage features of the two platforms

without any tie-ins to a specific operating system, allowing your

Web server applications to run on the two most widespread

operating systems for Internet servers.

Core TCP/IP Support
The common factor for all Internet and Intranet applications is

communication over TCP/IP sockets. Most of the time the

communication is constrained by a set of rules, known as a

communication protocol. For example, SMTP and POP3 are

two very simple protocols for sending and retrieving mail

messages, defined by the Internet standard bodies.

Using Delphi you can:

• Implement the client and the server side of a proprietary

protocol, using the TServerSocket and TClientSocket

components, found in the Internet page of the component

palette. This is handy for distributed applications, but

creates a closed system, in which other programs not

written by you cannot interact (which might be an

advantage or a disadvantage, depending on the situation).

That is, of course, unless you want to define a new protocol

and publish the specs for others to “join” you.

Figure 1: The Internet page of Delphi’s component palette,
hosting the socket and HTML producer components.

• Implement an existing protocol on the client or on the

server side. This can be done again with the generic socket

components mentioned above, but its generally

accomplished by using protocol-specific Delphi

components provided by third parties, some of which are

even pre-installed in the Delphi IDE.

• Support the HTTP protocol, the core of the Web, and the

HTML file format. As these play such a major role, I’ll

cover them separately from the other protocols.

The support for TCP/IP and socket programming in Delphi is

as powerful as using the direct API (Winsock, in case of the

Windows platform) but far simpler. The socket components, in

fact, shield the programmer from some of the complex technical

details, but surface the Windows handles and low-level APIs,

allowing for custom low-level calls.

Writing simple programs with socket support in plain C calling

the Windows APIs requires hundreds of lines of code, while

using the Delphi socket components, a few lines of code will

suffice, even for complex tasks. That’s the standard advantage of

component-based development. Also, building a simple user

interface for the program is often trivial in Delphi. With other

development environments, you need to program the socket in a

low-level language (such as C) and then write the user interface

with a different visual tool, integrating the two and requiring

knowledge of multiple languages.

Delphi

4

Client Side Protocols Support
To develop the client side of Internet applications, Delphi

provides you ready-to-use components. There are multiple sets

of native VCL components you can adopt, all based on a similar

philosophy:

• The NetMaster components are pre-installed in the Delphi

environment (see the FastNet page of the component

palette), and include client-side support for the most

common Internet protocols (including POP3, SMTP,

NNTP, FTP, and HTTP).

• The Indy open source components (“Internet Direct”,

previously called WinShoes and now “federated” with the

Jedi Project) are available on Delphi 5’s Companion CD and

from their web site (http://www.nevrona.com/indy). It has

been announced that Indy will be included by default in

Delphi 6 and Kylix (Delphi IDE for the Linux platform).

• The free ICS components (“Internet Component Suite”,

available at http://users.swing.be/francois.piette/icsuk.htm,

include the complete source code) and are designed and

maintained by Francois Piette and form another set of very

popular Delphi components, supporting most Internet

protocols.

• A few other commercial offerings, including IP*Works

components (http://www.dev-soft.com/ipwdlp.htm) and

Turbo Power’s Internet Professional

(http://www.turbopower.com/products/IPRO/).

Some of these components map directly to their own WinSock

wrappers, others also use the WinInet library, a Microsoft system

DLL that implements support for the client side of FTP and

HTTP protocols. Regardless of the set of components you are

going to use, they are really quite simple to work with. If you

have an existing application, and want to mail-enable it, just drop

a couple of components onto your form (or data module), set

their properties (which include the indication of the mail server

you want to connect with) and write few lines of code.

For example, to send email with NetMaster’s component, you

can use the following simple code:
// component properties

object Mail: TNMSMTP
 Host = 'mail.server.com' // your web
service
 Port = 25
 PostMessage.FromAddress =
'marco@marcocantu.com’
end
// code to send the above email
message
Mail.PostMessage.ToAddress.Add
('davidi@borland.com');
PostMessage.Subject := 'Borland
Community Site';
PostMessage.Body.Add ('Hi David, I
wanted to ask you...');
Mail.Connect;
Mail.SendMail;
Mail.Disconnect;

In short, these are the advantages of using Delphi for supporting

Internet client applications:

• Choice among various offerings of components (some of

which are totally free and open source)

• Easy integration with existing applications

• Easy development of new and specific user interfaces, with

Delphi visual and object oriented architecture

Server Side Protocols Support
Besides supporting web protocols in existing applications, or

writing custom client programs specifically for them (as a

completely custom email program), in a corporate environment

you often need to customize Internet server applications. Of

course, many of the available pre-built servers can be used and

customized, but at times you’ll need to provide something that

existing programs do not support.

In that case, you might think of writing your own server, if only

it wasn’t so complex. Using Delphi and a set of server side

components you can build custom servers with only limited

extra effort, compared to a client program, and achieve (or at

times exceed) the performance of professional quality Internet

server programs.

Server side components were pioneered by Jaadu

(http://www.jaadu.com), which offers a web server component

and are now available in the Indy component set (discussed

above). There is also a set of highly optimized native Delphi

Delphi

5

components, called DXSock (http://www.dxsock.com),

specifically aimed at the development of Internet server

programs. Some of the demonstrations of these component sets

are actually full-fledged HTTP, mail, and news servers.

Client Side Web Support
If many Internet protocols are important, and email is one of the

most commonly used Internet services, it is undeniable that the

Web (that is, the HTTP protocol) is the driving force of most of

the Internet development. Web support in Delphi is particularly

rich. Here, we are going to start by exploring the features

available on the client side (to integrate with existing browsers)

and then we’ll move to the server side, devoting plenty of time

to the Web server development that you can do with Delphi.

• The HTTP components available in most suites allow you

to create a custom browser within your application: You can

reach existing Web sites and retrieve HTML files or post

custom queries. At this point you can send the HTML

content returned by the HTTP server to an existing browser

or integrate a custom HTML processor or HTML viewer

within your application. The ways in which can apply are as

follows:

• Sending an HTML file to Microsoft’s Internet Explorer or

Netscape Navigator, either using it as an external

application, by calling the ShellExecute API function:
ShellExecute (Handle, 'open',
'c:\tmp\test.htm', '', '',
sw_ShowNormal);

or integrating the Internet Explorer ActiveX control,

surfaced in Delphi as the ready-to-use WebBrowser

component.

• Processing HTML in a custom way, to extract specific

information; this is useful in case you don’t need to show

the HTML to a user, but want to process it, eventually

extracting specific information from it.

• Showing the HTML within your program using a native

Delphi component (so that end users don’t need to have

Internet Explorer installed). These components are available

by third parties, with the most well known HTML viewer

component being offered by David Baldwin (see the Web

site http://www.pbear.com).

The reverse of integrating a browser within your application, you

can integrate your application within the browser. This is rather

easy to accomplish by using Internet Explorer and the ActiveX

technology. Delphi supports this technology in full using the

ActiveForm technology. An ActiveForm is built in the same

visual way that a plain Delphi form is constructed, but an

ActiveForm is hosted within an HTML page of Internet

Explorer. You can even move existing programs to the Web by

hosting their main form within an ActiveForm.

Figure 2: An example of a wizard built with Delphi (it is
based on a PageControl component) and deployed within
an ActiveForm. The buttons allow you to reach different
pages of the form, without moving outside of the browser’s
page.

This Microsoft specific technology (ActiveX is not supported by

other browsers) can simplify the deployment of simple Delphi

applications within an Intranet, as users can download the

programs they need by pointing their browser to specific pages.

The ActiveX technology, however, is not well suited for the

Internet, as too many people have different browsers or

operating systems, or disable this feature in their browser for

Delphi

6

fear of the potential harm caused by the automatic execution of

programs that are downloaded from the Web.

• The advantage of Delphi in this area is that, once more, it

allows you to customize your existing programs to take

advantage of the Internet, and make them work seamlessly

with Web browsers. Also, if you choose not to use the

ActiveX technology, you won’t be tied to any particular

browser or platform.

Server Side Web Development
As anticipated, all the development related to Web servers is by

far the most important area of Internet development, and again

one where many alternative solutions are available. Delphi has

offered developers strong server side Web development since

version 3, with Delphi 5 being a mature environment for

building Web server extensions. Delphi includes multiple

technologies to support server side development, so I’m going to

cover:

• The HTML Producer components

• The WebBroker technology for building CGI, WinCGI, and

ISAPI/NSAPI server side extensions

• The Internet Express technology (introduced in Delphi 5)

for building database-oriented server side applications,

based on standard technologies such as XML and

ECMAScript (formerly known as JavaScript).

Generating HTML pages
Delphi includes several components aimed at the generation of

dynamic HTML pages. There are two different sets of producer

components, page-oriented and table-oriented ones. When you

use a page oriented HTML producer component, such as the

PageProducer, you provide the Producer component with an

HTML file with custom tags (marked by the # character). You

can then handle the OnTag event of the component to replace

these custom tags with specific HTML code.

The following is sample code for this OnTag event:
procedure
TFormProd.PageProducer1HTMLTag(Sender:
TObject;

 Tag: TTag; const TagString: String;
TagParams: TStrings;
 var ReplaceText: String);
var
 nDays: Integer;
begin
 if TagString = ‘date’ then
 ReplaceText := DateToStr (Now)
 else if TagString = ‘expiration’
then
 begin
 nDays := StrToIntDef
(TagParams.Values[‘days’], 0);
 if nDays <> 0 then
 ReplaceText := DateToStr (Now +
nDays)
 else
 ReplaceText := ‘<I>{expiration
tag error}</I>‘;
 end;
end;

This code handles a plain tag, date, which is replaced with the

current date, and a parametric one, expiration, which includes a

parameter indicating the number of days the information on the

page remains valid. The HTML for this custom tag will look like:
Prices valid until <#expiration
days=21>

The output will be something like: “The prices in this catalog are

valid until 12/24/2000”, as you can see in Figure 3.

Figure 3: The HTML file generated by a PageProducer
component.

The advantage of this approach is that you can generate such a

file using the HTML editor you prefer, simply adding the custom

tags. Notice also that the same OnTag event handler can be

shared by multiple producer components, so you don’t need to

Delphi

7

code the same tag expansion multiple times within the same

program.

A second component of this group, DataSetPageProducer, can

automatically replace tag names with the values of the fields of

the current record of a dataset.

Another group includes HTML table oriented components. The

idea is to convert automatically a dataset (a table or the result set

of a query or stored procedure) into an HTML table. Although a

standard conversion is supplied, you can add custom tags and

styles for the grid, each of the columns, and even specific cells of

the table. The customization is similar to that which can be

applied to a visual DBGrid inside a Windows application. For

example, the following code turns all the cells of the second

column that have a value exceeding 8 digits red in color (with the

effect you can see in Figure 4):
procedure
TFormProd.DataSetTableProducer1FormatC
ell(
 Sender: TObject; CellRow,
CellColumn: Integer;
 var BgColor: THTMLBgColor; var
Align: THTMLAlign;
 var VAlign: THTMLVAlign; var
CustomAttrs, CellData: String);
begin
 if (CellColumn = 1) and (Length
(CellData) > 8) then
 BgColor := 'red';
end;

Figure 4: The output of a DataSetTableProducer, with
custom colors for specific cells.

The second component, the QueryTableProducer is specifically

tailored for building parametric queries based on input from an

HTML search form. The parameters entered in the form are

automatically converted by the component into the parameters

of a SQL query and the resulting dataset is formatted in an

HTML table: all this complex work can be set up with no

custom coding!

Advantages

• You can write the basic HTML code with the editor you

prefer and simply include custom tags.

• You are not mixing scripting code with the HTML code,

but keep them totally separate. The HTML simply includes

a placeholder for the code that is going to be generated.

• The script is replaced by full-performance compiled code.

• Using this technique you can easily access database data,

and render the result of complex queries in HTML tables

with no custom coding!

Further Notes
The HTML producer components can also be used to produce

static web pages, that is plain HTML files that can be placed on

your web server and not server dynamically by a program.

Notice also that beside HTML files, Delphi programs can

produce JPEG files, using the TJPEGImage component. Again,

these files can be placed on a server or produced dynamically

from a server extension. The generation of images includes the

generation of the complex business graphs, available through the

native TeeChart components.

The WebBroker Framework
The development of Web server extensions (that is, custom

applications seamlessly integrated with a Web server) can be

based on multiple competing technologies, including:

• CGI (Common Gateway Interface, common on UNIX

boxes),

• WinCGI (the Windows flavor of the same technology),

Delphi

8

• ISAPI Internet Server API, libraries specifically tailored for

Microsoft’s own IIS) and NSAPI (the corresponding API

offered by Netscape’s web server),

• Apache modules (the same idea, but for the open-source

Apache Web server) – this standard is not currently

supported by Delphi, but Borland has revealed plans to

support it in Kylix, the project for a Linux version of

Delphi.

The problem with most of these technologies is that even if they

are all based on the HTTP protocol, the way you receive the

same information and make it available to the Web server

changes substantially. For this reason, Borland has built in the

VCL a small object-oriented framework, called WebBroker,

which removes those differences. You write all of your code

targeting a few generic base classes, and ask Delphi to provide

you a specific implementation for, say, CGI or ISAPI. This

means you can move your programs (even complex ones) from

one of these technologies to another simply by providing a

different project source code and a few lines of code.

• Once the “bridge” includes Linux based servers beside

Windows ones, the WebBroker technology will be able to

bridge a large variety of web servers on multiple operating

systems.

Not only does WebBroker provide a bridge among multiple

technologies, it also provides a lot of core routines and facilities,

to simplify server side development. For example, you can ask

for a specific value inside a query string by writing:
stringName := Request.QueryString
[‘Name’];

instead of having to parse a complex string yourself. This is just

one simple example, there are a great many timesavers within the

WebBroker architecture, to enable you to really speed up

development.

Consider also that the WebBroker architecture is generally used

in conjunction with the HTML producer components. The

development of a program which executes a query on a SQL

server, formats it using an HTML table, and returns it from a

server side application takes probably less than 20 mouse clicks

and almost no coding!

Figure 5: A query form like this one can be directly tied to
the parameters of an SQL query, via a QueryTableProducer
component and with almost no coding!

For example, if you have the following HTML file with a table

(shown in Figure 5), you can hook it with a script (called

CustQuery.exe) to process the request. This is the HTML code,

with a table having two input fields:
<html><head>

<title>Customer Search
Form</title>
</head>
<body>

<h1>Customer Search Form</h1>
<form
action="/scripts/CustQuery.exe/search"
method="POST">
<table>
<tr><td>State:</td>
 <td><input type="text"
name="State"></td></tr>
<tr><td>Country:</td>
 <td><input type="text"
name="Country"></td></tr>
<tr><td></td>
 <td><center><input
type="Submit"></center></td></tr>
</form>

</body>
</html>

Delphi

9

Figure 6: The choices offered by Delphi’s Web Server
Application Wizard.

Now you can create a Delphi WebBroker application, using the

Web Server Application Wizard (see Figure 6), and choosing

CGI (or whatever technology you prefer). Inside the

WebModule Delphi will create and open for you, you can add an

action, by right-clicking on the Actions item of the Objects Tree

View (above in Figure 7) or using the add button or local

command of the resulting actions list editor (below in Figure 7).

You can open the action list editor double clicking on the

WebModule itself.

Figure 7: The actions of a WebModule can been seen in the
Objects Tree View (at top) and in the actions list editor (at
bottom). Their properties are set in the Object Inspector
(at left).

Set the action with the “/search” value in the PathInfo property.

This can be connected (using the Producer property) with a

QueryTableProducer component added to the data module. This

component, in turn, is hooked to a Query component, via its

Query property.

The Query component will be executed when the action is

invoked, passing to its Params the QueryStrings or

ContentStrings parameters of the WebRequest. This means that

Delphi will extract the values entered in the HTML input boxes

and copy them to the query parameters having the same name.

So, we can use a query like the following, with to parameters

having the same name of the input fields (see again the HTML

code above):
SELECT Company, State, Country
FROM CUSTOMER.DB
WHERE
 State = :State OR Country = :Country

That’s all! Even with no Delphi code we’ve obtained an HTML

front end for a database search. By customizing the HTML table

output, attaching a style sheet, adding extra code for custom

processing, you can build a professional version of this program

within a few hours.

In short:

• WebBroker allows you a single source code solution for

multiple technologies: CGI, CGI-Win, ISAPI/NSAPI, and

also Apache Modules moving forward.

• Combined with the HTML producer components, your

server side applications can easily produced HTML pages,

particularly showing database data.

• Your WebBroker code will be portable to Linux with little

effort, once Kylix is released.

Supporting Microsoft's Windows DNA
architecture
Besides talking about the WebBroker framework, and the

Internet Express technology I’ll discuss later, Delphi has a full

and high quality support for the entire Windows’s DNA

architecture (which will be superceded by the dotNet

architecture, but is probably going to remain in use for quite

some time). Delphi has traditionally been the first visual

Delphi

10

development environment to support ActiveX and MTS

technologies, even before Microsoft’s own visual tools provided

such support.

Not only this, but Delphi’s simplified and yet complete COM

support is still unparalleled in the industry. Based on this high-

quality low-level COM support, Delphi provides support for

most COM-related technologies, such as Windows Shell

programming, Automation, Active Documents, ActiveX (and

also the Web-oriented ActiveForm technology I’ve already

covered), MTS and COM+, and many others.

Using Delphi you can write MTS object defining your business

rules and database integration code, provide a layer of ASP-

enabled COM objects to generate HTML and user interface

elements, and wrap everything in ASP scripts (Microsoft’s Active

Server Pages technology). This corresponds to embrace

Microsoft’s proposal in full, with high quality support.

Giving this past track record, we can probably expect a future

release of Delphi to fully support COM+ (although I have to say

you can already write COM+ applications with Delphi 5, with a

little extra effort) and other emerging Microsoft standards.

In short:

• Delphi’s support for the Windows platform is complete,

including the support for the entire COM architecture and

the Windows DNA model.

• Delphi’s ability to write low-level COM code makes it

possible for you to target new standards without having to

wait for Borland support within the development

environment. You can hardly say the same for any other

visual tool.

• While fully supporting Microsoft technologies, Delphi

allows you to avoid the strong tie-ins you’ll end up with by

using Microsoft tools. With a little engineering effort, you

can build Delphi classes which can exposed their

functionality in a way suitable to Microsoft’s DNA

technologies (for example using the Delphi code inside

ISAPI servers and COM objects) and be able to port them

to other Web Servers and other platforms, such a Linux, by

providing a different wrapper to the same core code.

InternetExpress: XML, ECMAScript, and
DHTML
Delphi 5 has further extended the traditional Delphi offering in

the area of Internet development by providing a brand new

technology based on the most recent open standards.

InternetExpress is based on two key components:

• The XMLBroker component can convert an existing dataset

(using the MIDAS data stream format) into XML data. You

can convert the result of a query, an entire table, and use

any of the Delphi dataset components (those based on the

BDE, the dataset components based on Microsoft’s ADO,

or the native InterBase components), to provide data to the

XMLBroker and surface it on a web page.

• The MidasPageProducer component is a visual component

designed for HTML forms based on the data provided by

the XMLBroker. These pages, once made available in a

browser, not only allow a user to see the database data, but

have full support for editing, deleting, and inserting data in

the database.

The user interface construction becomes similar, in its

capabilities, to the common Windows user interfaces, although it

is a native Web application, capable of running in multiple

browsers with no need of any plug-in or custom extension. The

reason for this openness lies in the fact that the Internet Express

technology is based on open standards, these being:

• XML and an XML DOM

• ECMAScript (the official name of the JavaScript

technology), is the only scripting language supported by

most Web browsers, which can be used to customize the

user interface, apply simple input and editing rules on the

client side, make the user interface interact with the XML

data.

• Dynamic HTML and CSS (Cascading Style Sheets) allow the

development of a modern user interface within a browser,

avoiding a tie-in of graphical elements with the HTML and

the data rules. Quite the contrary, in fact, as the various

Delphi

11

elements (HTML code, business rules, SQL server access)

are kept well separate.

As mentioned earlier the InternetExpress architecture is based

on Borland’s MIDAS 3 technology. In its complete extensions,

the architecture has 4 separate layers (see Figure 8), these being:

Figure 8: The different layers of a multi-tier Internet
Express application.

• The SQL server (any of those supported by BDE, ADO, or

native components), eventually running on a separate

computer

• A MIDAS application server, which connects to the SQL

server, applies specific business rules, and provides the data

to the clients

• A WebBroker Web server extension, which ties to the Web

server, and converts the data received by the MIDAS server

into XML and provides a suitable HTML user interface

• The Web browser, which can be either Internet Explorer or

Netscape (or other complying with the standards) and can

run on any operating system

In the case of simpler projects, the picture can actually be

simplified by merging the MIDAS server and the XML producer

components into a single application. The advantage of the

overall architecture is that you also gain the benefits of the

MIDAS infrastructure, including a proper abstraction of the

business logic, transport independence (it can run on top of

TCP/IP, HTTP, DCOM, MTS, and CORBA), and resource

pooling (to share SQL server connections).

In practice, let me guide you through the steps you’ll need to

build a simple Internet Express front end for editing a simple

database table. The starting point is again the creation of a new

Web Server Application, using the wizard. In the web module

you can add an action (see again Figure 7 and the description of

the related example) and mark this action as the default action,

by setting its Default property to True. Now you need the

following components:

• An actual data set, such as a table or query component,

connected with a database (using BDE, ADO, or another

database access technology). The simplest solution is to use

a BDE Table (from the Data Access tab of the component

palette), setting its DatabaseName and TableName

property. You can use the sample DBDEMOS alias for the

DatabaseName property, and choose any of the available

tables (from the drop-down menu of the property)

• A data set provider component (from the MIDAS tab of

the component palette), hooked with the data set (Table1 in

this case) using its DataSet property

• An XML broker component (from the InternetExpress tab

of the component palette), hooked directly with the

provider (in a “single” tier approach) using its

ProviderName property

• A Midas Page Producer component (again from the

InternetExpress tab of the component palette), connected

with the default action of the web module by setting the

Producer property of the action

At this point you can open the Midas Page Producer (by double

clicking on it), and use its special editor to prepare the HTML

form. For example, you can add a data form, add into it a data

grid (connected with the XML broker) and a navigator (hooked

to the grid using the XMLComponent property).

Delphi

12

Figure 9: The editor MidasPageProducer component
within the WebModule of our InternetExpress application.

After these steps you’ll have a complex data module. To

summarize its key options, I’m going to list the textual version of

its DFM file, an internal Delphi file that reflects the result of

visual development actions. You won’t ever need to type this

code, it is just a summary on the visual setting done in the

Object Inspector, very useful for reference and documentation

purposes. You can view your own WebModule this way by right

clicking on it and then selecting “View as Text” command.

You’ll see more code than that listed here, as I’ve extracted form

the textual definition of this DFM file only its key elements:

object WebModule1: TWebModule1
 Actions = <
 item
 Default = True
 Name = 'WebActionItem1'
 PathInfo = '/MidasPageProducer1'
 Producer = MidasPageProducer1
 end>
 object Table1: TTable
 Active = True
 DatabaseName = 'DBDEMOS'
 TableName = 'country.db'
 end
 object DataSetProvider1:
TDataSetProvider
 DataSet = Table1
 end
 object XMLBroker1: TXMLBroker
 ProviderName = 'DataSetProvider1'

 WebDispatch.PathInfo =
'XMLBroker1'
 end
 object MidasPageProducer1:
TMidasPageProducer
 HTMLDoc.Strings = (...)
 IncludePathURL = '/include/'
 object DataForm1: TDataForm
 object DataGrid1: TDataGrid
 XMLBroker = XMLBroker1
 end
 object DataNavigator1:
TDataNavigator
 XMLComponent = DataGrid1
 end
 end
 end
end

Notice you have to remember to set the IncludePathUrl

property of the Midas Page Producer to a URL referring to a

directory where the browser can find the required JavaScript

files. Otherwise the browser will show an error message, and no

data.

Figure 10: The InternetExpress application we have just
built inside a browser (in this case Microsoft Internet
Explorer)

This is all! At this point you’ll have a complete application,

allowing a user not only to see the data inside a browser (any

browser!) but also to edit the data and send it back to the server,

to be posted to the database. See Figure 9 for an example. And,

again, with no coding required we’ve only chosen the basic

options, but with some study (one of the few references,

although limited on this regard, is my own book “Mastering

Delphi 5”) and effort you can build sophisticated program, with

a modern browser-based UI.

Delphi

13

In short:

• With Delphi InternetExpress architecture you can extend

MIDAS multi-tier applications with a browser-based user

interface. Relying on HTTP, XML, and ECMAScript, the

architecture is not tied to any browser or operating system,

which differs from other equally powerful solutions.

• Developing a simple front end for you business data with

InternetExpress is really a very fast and completely visual.

Even without knowing all the core technologies of the

architecture, you can still easily write fully functional and

professional-looking web sites.

Third-Party Web Server Extensions
Besides using Borland’s own InternetExpress technology, you

can use Delphi with some third party components and tools,

which support the development of HTML-based server side

applications with different approaches. There are many tools in

this category, so I’m just mentioning the most popular ones, and

not trying to offer a complete picture.

• HREF (http://www.href.com) offers the popular WebHub

framework, an advanced technology for manipulating

HTML snippets and create Web content based on database

data. WebHub is capable of handling user sessions, separate

the code development from the server side technology used,

and helps developers to move to a proper Web-centric

approach, instead of adapting existing Windows user

interfaces to the Web.

• Nevrona Design offers ND-IntraWeb

(http://www.nevrona.com/intraweb) which follows an

opposite approach: Using a series of custom user interface

components it allows you to build a user interface which

can work equally well inside a Windows program or a Web

browser.

• Marotz Delphi Group offers ASP Express

(http://www.asp-express.com) offers a set of components

designed to encapsulate and simplify the development of

Windows DNA applications. It uses ASP, MSXML, COM,

and other technologies, making it easier to combine

everything with Delphi code.

In short:

• Custom server side solutions provide ready-to-use complex

frameworks for the development of your applications with

Delphi. Some of these technologies have been successfully

used for the development of large and complex web sites.

• Similarly to the use of components wrapping server side

protocols, you can have full control of the entire software

on your web server, with no risk of others people bugs

creeping into your system.

Delphi in Action on the Internet
Delphi’s capabilities in the area of Internet and Web

development can be discussed by their technical merit, as I’ve

done in this paper, but can also be evaluated based on their

success. Delphi is used for the development of many Internet-

products, ranging from simple shareware utilities to huge e-

commerce Web sites. Although the press is all about other

languages and environments, Delphi has found its inroads in the

Internet era, and is in widespread use right now.

Borland provides a long list of success stories (see

http://www.borland.com/about/cases and

http://www.borland.com/delphi/cases), but there are a few

worth highlighting. Among the web sites powered (at least for

the database oriented portions) by Delphi there are:

• Autobytel.com, a US on-line car dealer

• The National Trust (http://www.nationaltrust.org.uk), a

UK organisation for preserving historical buildings

• iVillage.com, the women’s network web site

• Dulux Trade Paints (http://www.dulux.com), a web site for

choosing paint colors

• CalJobs (http://www.caljobs.ca.gov), the State of California

Internet system for linking employer job listings and job

seeker resumes.

• Travel.World.Net, a complete travel services management

system by Australian World.net.

Delphi

14

Speaking of Internet utility programs, almost half of the

Internet-related shareware programs on the market are built with

Delphi. Some worth mentioning, taken from different categories,

are:

• The powerful email manager The Bat!

(http://www.ritlabs.com) and the freeware mail client Mail

Warrior (http://pages.infinit.net/kaufman), top rated in

many software web sites

• The acclaimed HTML editor HomeSite

(http://www.allaire.com/homesite)

• The MERAK Mail Server (http://www.icewarp.com)

• Two of the most popular IRC clients, Pirch

(http://www.pirchat.com) and Virc

(http://www.megalith.co.uk/virc/)

There are also newsgroup readers, FTP front ends, XML editors,

chat programs, and applications for the client and the server side

almost any possible Internet protocol.

Another area of success in Delphi development is the creation of

high-quality ASP components. Among the most popular ASP

add-ons mentioned on Microsoft’s web site

(http://msdn.microsoft.com/workshop/server/components/ca

talog.asp) there are quite a few written in Delphi, including the

ASP components written by Dimac (http://www.dimac.net) and

including the popular JMail component, described as “the

leading SMTP-component for ASP-coders”.

You can find a rather complete (albeit unofficial) list of Internet

applications and Web sites powered by Delphi on the “Built with

Delphi” area of the Baltic Solution web site

(http://www.balticsolutions.com/bwd).

Conclusion: The Delphi Advantage
After this long detailed paper it is not easy to summarize in only

a few words why you should use Delphi as a core Web

development tool, within your organization. I can certainly say

that Delphi delivers fast-performance applications built with a

rapid development environment for Windows and the Web. It

has optimal Client/Server support and the ability to write good-

quality object-oriented code, both for the building of a complex

application structure and also to delve deep into low-level

programming tasks.

A great tool for the entire Internet needs of any organization.

And a tool you can use today on the Windows platform and get

ready to extend to the Linux operating system with a visual and

high-performance development environment, the ideal solution

for all those who like programming “The Delphi Way”.

	The Challenges of Internet Programming	1
	The Challenges of Internet Programming
	Where does Delphi Fit?
	Core TCP/IP Support
	Client Side Protocols Support
	Server Side Protocols Support
	Client Side Web Support
	Server Side Web Development
	Generating HTML pages
	
	
	Advantages
	Further Notes

	The WebBroker Framework
	Supporting Microsoft's Windows DNA architecture
	InternetExpress: XML, ECMAScript, and DHTML
	Third-Party Web Server Extensions
	Delphi in Action on the Internet
	Conclusion: The Delphi Advantage

