
Creating WAP
Applications with
Borland® Delphi™

For Dynamic Data Driven Applications
Beyond the Web Browser

by Jani Järvinen

Introduction

The number of handheld Internet-ready devices is

growing at an enormous rate. The current estimates are

that by the end of year 2002, there will be as many

people accessing the Internet wirelessly as there are

accessing it traditionally using a desktop computer.

This growth shows no signs of slowing down. New

models of mobile phones, personal digital assistants and

wireless communications equipment are announced

almost daily. Since forthcoming wireless devices are

cheaper and easier to use than the regular desktop PC,

the preferred communication method in the future will be

wireless.

Although there are many competing

methods for wireless Internet

connection on the marketplace, only

Wireless Application Protocol (WAP)

has gained global acceptance. WAP is

an open, free standard that is

supported by all important mobile

phone vendors.

“[WAP is] the de facto worldwide

standard for providing Internet

communications and advanced

telephony services on digital mobile

 phones, pagers, personal digital

 assistants and other wireless

 terminals.”

 - The WAP Forum

Table of Contents
W A P Overview 2

 The history of WAP 2

 Who is behind WAP 2

Why develop W A P applications? 2

The technology behind W A P 3

 The basics 3

 Functions of a gateway 4

 WML decks and cards 4

 What is a microbrowser? 5

Creating your own W A P applications 5

 What hardware and software do I need? 6

 WeBroker™ 101 6

 Getting started with CGI applications 6

 IS AP I Ap p l ic a t i on s an d Da t a b a se sess i o n s 7

 Creating actions 8

 Responding to actions 9

 The initial WML page 10

 The ShowSymbol action 10

 Creating bitmap images on the fly 11

 Testing the example application 12

Conclusion 15 Delph i™

Delphi™

2

WAP Overview

The history of WAP

The WAP standard has been developed by the WAP

Forum, an industry association having more than 500

members. According to the WAP Forum, their members

represent of 95% of the global market share and over 200

million subscribers. Companies such as Nokia, Motorola

and Ericsson are all members of the forum.

Originally, the WAP Forum consisted of only four

members. Since 1997, when the forum was founded,

many standards specifications have been released. The

newest WAP specification is already in version 1.2, but

the most current generation of mobile phones supports

version 1.1.

When WAP and mobile phones first came into public

attention, the possibilities of the technology immediately

raised global interest. Since then, many mobile phone

models have been released, and the WAP standard has

proceeded to better support the demands of the users.

Who is behind WAP?

WAP is the product of the WAP Forum

(www.wapforum.org) , an association founded in 1997 by

Ericson, Motorola, Nokia, and Phone.com (formerly

Unwired Planet). The WAP Forum now has over 200

members and represents over 95 percent of the global

handset market.

The primary goal of the WAP Forum is “to bring together

companies from all segments of the wireless industry

value chain to ensure product interoperability and growth

of wireless market.”

Why develop WAP applications?

Even though WAP is a new standard, there are already

millions of potential customers, both corporate and

consumer, waiting for interesting applications to emerge.

WAP, being open and secure, is well suited for many

different applications, including but not limited to stock

market information, weather forecasts, enterprise data,

and games.

Certain applications will be accessible only by using WAP

phones, but other application types will also benefit from

WAP. For example, monitoring and reporting applications

could publish data to a WAP phone, giving the user

access to the same information regardless of his or her

location.

Despite the common misconception, developing WAP

applications requires only a few modifications to existing

web applications. The current set of web application

development tools will easily support WAP development,

and in the future more development tools will be

announced.

Borland is committed to supporting WAP application

development. All its premier development tools, Delphi™,

C++Builder™ and Jbuilder™ can be used to develop real-

world WAP applications. Using solid Borland tools like

these are a great help to developers.

The technology behind WAP

The WAP protocol can be thought as of a collection of

different protocols that work together to achieve a

common goal. Some of these protocols are already well-

known Internet protocols, such as TCP, IP and HTTP. On

the wireless side, WAP uses a different set of protocols to

transfer presentation data “on the air”.

Delphi™

3

Layer WAP Web

Application Layer Wireless

Application

Environment

(WML and

WMLScript)

HTML, Scripting

languages

Transport Layer WSP, WTP, WTLS

and WDP

HTTP, SSL, TCP,

UDP

Network Layer Bearer IP

The basics

In conventional web architecture, a web browser

establishes an HTTP connection with a web server, which

processes the request and then returns HTML code to the

web browser. The web browser will then display the

HTML code on screen, along with any images, sounds

and animation.

In WAP, the idea is essentially the same, except that

technical reasons make the architecture somewhat more

complex. The following figure illustrates this.

When a WAP phone user wants to access the Internet,

the phone will first initiate a connection with an

intermediate server, known as the WAP gateway. The

WAP architecture doesn’t mandate the use of any specific

wireless network type, but instead relies on existing

transports, such as TDMA, GSM or CDMA.

Since the gateway is wired directly to the Internet, it will

access an existing web server using normal protocols,

TCP/IP and HTTP. Of course, the gateway could also be

a wireless device, and when learning WAP, is it

convenient to think that the link between the WAP phone

and the gateway is wireless, while all other connections

use cables.

Since all resources are addressed using URLs, the gateway

will access the resource on the Internet on behalf of the

mobile phone. Thus, all web servers connected to the

Internet can be potential WAP application servers.

Because a WAP phone is limited in memory, display

technology and transfer speed, a WAP phone doesn’t

directly display HTML content and images. Instead, a

WAP phone is only capable of displaying data coded in

the Wireless Markup Language (WML).

This language is an XML-based language that looks like

HTML used in normal web applications. Because of the

limitations of WML compared to HTML, the web server

should return WML code to the gateway. In certain cases,

the gateway can convert regular HTML to WML, but this

solution should generally be avoided.

Once the gateway has read the WML code from the Web

server it will compress it to a binary format, and then

transfer it to the mobile phone. The user can then read

the information and act accordingly.

HTML

Filter

URL URL

WML

(Compiled)

WML

HTML

WAP

Gateway

Target HostWAP Device

Delphi™

4

Functions of a gateway

A common question among beginning WAP developers is

whether a WAP gateway is really required. Technically,

the functionality of the WAP gateway cannot be

completely eliminated, but it could be integrated into the

web server.

Normally, a service provider (operator), such as Bell

Atlantic, France Telecom, Sonera or AT&T, hosts the

gateway. Since the WAP phone will first initiate a

connection the gateway, the gateway can provide

additional services to the mobile phone user. For

example, the initial welcome page could display a

personalized menu and integrate into the other services

provided by the operator.

Speaking of the gateway, the operator can also efficiently

limit those services that the user can access with his or

her mobile phone. As an example, some service

providers will limit the user to only those services

provided by the service provider.

This is without doubt one of the biggest complaints about

the WAP technology. Technically, there is nothing to limit

the services a WAP phone can access, and there are a lot

of free WAP services on the Internet.

When some mobile phone operators disable those

services on the gateway, they limit the number of

available services dramatically. This has caused some

WAP application developers to provide their own

gateways with unlimited access to the Internet.

However, the ability to limit user’s possibilities can be

considered an advantage. Corporate intranets will without

doubt benefit from the ability to limit their users to only

certain services.

WML decks and cards

As noted in the introduction, WAP protocol uses WML

code to represent the user interface on a WAP phone.

This code looks very similar to HTML, but as an XML

based language, the format is much more strict. For

example, forgetting to close a (bold) tag will cause

an error message to be displayed on the mobile phone.

In HTML, such errors are silently ignored.

Because of the limitations in bandwidth, screen resolution

and user interface, a WML file is organized differently

than an HTML file. In WML, each file is divided into

cards, and a collection of cards is called a deck.

The WAP phone is only capable of displaying only a

single card at a time. Although a card can be larger than

what will fit on the phone’s screen, they are generally

designed so that they fit completely on the phone’s

screen.

Navigation between the cards is provided using regular

URLs, and transitions between the cards are swift because

no connection to the gateway is required. Just like a

normal web browser, a WAP phone can also provide a

“Back” button with which the user can return to a

previous card.

Delphi™

5

Given the architecture of a WAP application, it is quite

evident that navigating between WML decks is an

expensive operation, in terms of performance. To

compensate for this, WAP phones support resource

caching as well as a primitive scripting language,

WMLScript.

This scripting language can be used to manipulate the

properties of the microbrowser. One good use of

WMLScript is form validation. Used this way, the

WMLScript can help to keep the performance of the

application high.

What is a microbrowser?

Just like an ordinary PC requires a web browser to

display web pages, so does a WAP require a browser to

display the WML cards. Because of the memory

requirements, the browser in a WAP phone is called a

microbrowser. Although tiny in memory footprint, it

supports many features and is even scriptable.

The web server

In the WAP architecture, the web server communicates

with the WAP gateway, accepting HTTP requests and

returning WML code to the gateway. The HTTP protocol

mandates that each reply must include something called a

MIME type (Multi-Purpose Internet Mail Extensions).

In normal web applications, this MIME type is set to

text/html, designating normal HTML code. Images, on the

other hand, could be specified as image/gif or

image/jpeg, for instance. With this content type

specification, the web browser knows the data type that

the web server returns.

In WAP applications those previously mentioned, MIME

types cannot be used. Instead, a new set of MIME types

must be used, as shown in the following table:

File type MIME type

WML (.wml) text/vnd.wap.wml

WMLScript (.wmls) text/vmd.wap.wmlscript

WBMP (.wbmp) image/vnd.wap.wbmp

In dynamic applications, the MIME type must be set on

the fly, whereas in static WAP applications the web server

must be configured appropriately. Forgetting to properly

set the MIME type is probably the most common mistake

in beginning WAP application development.

For more information about configuring MIME types for

your web server, please consult your web server

documentation.

Creating your own WAP applications

Borland® Delphi™ already includes excellent support for

building web applications. With only a little additional

work, it is possible to create advanced WAP applications.

However, while normal web applications can be

developed only with Delphi, a web browser and a web

server, developing WAP applications requires additional

software and hardware.

When developing WAP applications, it is generally in the

interest of the application developer to re-use code and

components from previous applications. With careful

design and usage of technologies such as XML, it is

possible to create an application that will serve both

ordinary web browsers (HTML) as well as WAP

microbrowsers (WML).

Delphi™

6

What hardware and software do I need?

At minimum, developing WAP applications requires a

web server and a WAP simulator. Using simulator

software while developing a WAP application is

convenient as all the required software can be installed

on the development PC— the one on which Delphi is

installed.

Although software simulators are good in their own right,

no WAP application should go into production without

testing it with actual hardware. The following list gives a

quick overview of the necessary hardware and software

to test and develop WAP applications:

• a Web server with connection to the Internet

• a WAP simulator

• a WAP gateway

• a WAP phone

The Appendix A lists some WAP gateway, simulator and

phone vendors. For the purposes of this article, it is

assumed that Microsoft® Internet Information Server 5.0

is used as the web server and Nokia™ WAP Toolkit

version 2.0 as the WAP simulator.

WebBroker™ 101

In Delphi, web application development is done using a

technology called WebBroker.™ This technology gives

the software developer freedom of choice over web

application architecture while still maintaining a high

level of abstraction over the underlying technologies. The

WebBroker technology is available in Delphi 5

Professional and Enterprise versions. It is not available in

the Standard version of Delphi 5. In the future, the

WebBroker technology will also be available on the Linux

platform in the forthcoming Borland Kylix™, the native

Rapid Application Development (RAD) environment for

Linux.®

At present, WebBroker supports CGI, WinCGI, ISAPI and

NSAPI applications. The application type is selected when

creating a WebBroker application and stays the same

until a new application is created. CGI and WinCGI

applications result in an EXE file, and the ISAPI and

NSAPI applications result in a DLL file being created.

All application types are created equally, and the source

code is almost always compatible with other application

types. Thus, if the application type needs to be changed

at a later time, it’s simply a matter of copying and pasting

the code to a new application.

In the Delphi IDE, WebBroker applications open up a

web module, which is very similar to a data module. The

web module is the container for database components

and other non-visual components that are required by the

web application.

As noted previously, building a WAP application only

requires a few modifications to existing web applications.

The following sections demonstrate how the Delphi

WebBroker technology can be used to build real WAP

applications.

Getting started with a CGI application

Developing WebBroker applications begins by selecting

the Web Server Application from the New Items dialog

box (activated using the File / New menu command).

Delphi™

7

After clicking OK, Delphi displays the New Web Server

Application dialog box. Here, you may choose the

application type you wish to use. This document

illustrates how to create a conventional CGI application,

but you can choose another application type as well.

For example, choosing an ISAPI application improves the

performance of your application if you are using

Microsoft IIS as your web server. Choosing a CGI

application will create an application that is most

compatible with the forthcoming version of Delphi on the

Linux platform, as ISAPI DLLs are not supported on the

Linux platform.

Once the correct application type has been chosen,

Delphi will display a blank web module on the screen.

The example application presented in this article is a

classic stock market application, one that has the ability

to display stock pricing and draw history graphs.

The example application uses the DBDEMOS sample

database that ships with Delphi 5. If you haven’t already

done so, install the sample databases from Delphi’s

installation CD, and make sure the Borland Database

Engine (BDE) alias DBDEMOS points to that data. The

easiest way to do this is to use the Custom Setup option

in Delphi’s installation program. Alternatively, you can

copy the necessary files from the RunImage directory on

the installation CD and create the alias manually in BDE

Administrator.

ISAPI applications and database sessions

If you are building ISAPI or NSAPI web applications, you

need to address threading issues in your applications.

Every ISAPI/NSAPI web application is a DLL, which is

loaded into memory by the web server. By default, the

DLL stays in memory until the web server is stopped.

When multiple, simultaneous hits occur to your DLL, the

web server spawns threads to call your DLL. This means

that your application’s code is potentially running in the

context of different threads. To protect against possible

conflicts, you must protect your code using

synchronization objects, as appropriate.

Other than protecting global variable access etc., you

must also protect your database connections if you are

using BDE enabled datasets. However, this is easier than

it seems at first.

To protect BDE datasets against multi-threading issues,

you must use a TSession component. A TSession

component is connected to a TTable or TQuery

component using the SessionName property. You should

Delphi™

8

also set the AutoSessionName property to True on the

TSession component. This automatically creates a unique

session name at run-time.

Note that it is not necessary to use a TSession component

in a CGI application, since only one thread is running at a

time. For more information about the TSession

component and its use in web applications, consult

Delphi’s on-line Help.

Because a database is needed for the example

application, you should begin by dropping a TTable

component onto the web module. Connect it to the

master.dbf file on the DBDEMOS alias by using the

Object Inspector™ to select DBDEMOS from the

DatabaseName property, and then select master.dbf from

the TableName drop down. After this has been done, you

are ready to proceed with creating actions for your WAP

application.

Creating actions

Just like an ordinary desktop application can have a

menu to let the user choose the different commands

supported by the application, so can a WebBroker

application respond to different commands.

In WebBroker terminology, these different commands are

called actions, and each WebBroker application can have

an unlimited number of actions. To understand how

actions work, consider the following URLs that point to a

hypothetical web application webapp.exe:

Delphi™

9

ht t p:/ / w w w .s o me ho s t.c o m/ s c r ipt s / w e ba pp.e xe / o r a nge s

ht t p:/ / w w w .s o me ho s t.c o m/ s c r ipt s / w e ba pp.e xe / ba na na s

Here, the URL is appended with a path, telling the web

application the fruit the user is interested in. In

WebBroker applications, each path is normally handled

by one action. This is also the case with the example

application.

No matter what happens to your application, it should

always return meaningful data to the user, even if it can

only be an error message. This is best accomplished by

creating a default action, which will be run if no other

action handles the request.

To create such an action, right-click the Action tree node

in the left-hand side of the web module, and choose Add

Item from the menu. It is convenient to rename the

actions so that it is easy to find a particular action in a

more complex application.

Responding to actions

What an action does is determined by the code that you

place in its OnAction event handler. In the case of the

sample application, the OnAction event handler of the

default action looks like this:

procedure

TStockSampleWM.StockSampleWMDefaultAction(Sender:

TObject;

 Request: TWebRequest; Response: TWebResponse;

 var Handled: Boolean);

begin

 Response.ContentType := WML_ContentType;

 Response.Content :=

StringReplace(WML_InvalidCall,'%datetime%',

 DateTimeToStr(Now),[]);

end;

For WAP applications, the most important point is to set

the correct MIME type before returning the WML code. In

the above example, the action sets the MIME type by

setting the Response.ContentType property to

WML_ContentType. This constant is defined in the

example application as:

Const
 WML_ContentType = 'text/vnd.wap.wml';

The second line of code makes the action return the
following WML code:

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML
1.1//EN" "http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
 <card id="problem" title="StockSample">
 <p>Invalid call at %datetime%.
 <do type="prev" label="Back">
 <prev/>
 </do>
 </p>
 </card>
</wml>

Delphi™

10

Of course, the string “%datetime%” is replaced by the
current data and time at runtime.

The initial WML page

Although the sample application presented in this white

paper is mostly dynamic, it does contain two static files

that are required for its operation. The most important is

the main screen file, contained in stocksample.wml; the

other is simply a wireless bitmap (WBMP) file.

The content of the static WML file is shown in the

following listing:

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML
1.1//EN" "http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
 <card id="init" newcontext="true">
 <onevent type="ontimer">
 <go href="#mainscreen"/>
 </onevent>
 <timer value="30"/>
 <p align="center">
 StockSample

 <small>Version 1.0</small>
 </p>
 </card>
 <card id="mainscreen" title="Main Screen"
newcontext="true">
 <do type="accept">
 <go href="/scripts/stocksample.exe/showsymbol"
method="get">
 <postfield name="symbol" value="$(symbol)"/>
 </go>
 </do>
 <p>
 Enter stock symbol:

 <input name="symbol" format="*A" maxlength="4"
 emptyok="false"/>
 </p>
 </card>
</wml>

The file contains two WML cards, identified as “init” and

“mainscreen.” The first card displays a logo screen and

includes a timer. This timer fires after three seconds, and

the main screen is then automatically displayed.

The main screen allows the user to enter a stock symbol

and follow a link to display information about the stock

symbol in question. Once the user has entered the

symbol and chosen to accept the form, control is

transferred to the example application, stocksample.exe.

The path “/showsymbol” corresponds to the ShowSymbol

action on the web module.

The ShowSymbol action

The code for the ShowSymbol action is as follows:

procedure
TStockSampleWM.StockSampleWMShowSymbolAction(
 Sender: TObject; Request: TWebRequest; Response:
TWebResponse;
 var Handled: Boolean);
Var Symbol,WML : String;
begin
 Response.ContentType := WML_ContentType;
 Symbol := Request.QueryFields.Values['symbol'];
 Try
 StockValue.Open;
 If StockValue.Locate('SYMBOL',Symbol,[]) Then Begin
 WML := StringReplace(WML_SymbolInfo,'%symbol%',
 Symbol,[rfReplaceAll]);
 WML := StringReplace(WML,'%price%',
 StockValueCur_Price.AsString,[]);
 WML := StringReplace(WML,'%high%',
 StockValueYrl_High.AsString,[]);
 WML := StringReplace(WML,'%low%',
 StockValueYrl_Low.AsString,[]);
 WML := StringReplace(WML,'%rating%',
 StockValueRating.AsString,[]);
 WML := StringReplace(WML,'%rec%',
 StockValueRcmndation.AsString,[]);
 Response.Content := WML;
 End
 Else Begin
 If (Symbol = '') Then Symbol := '(empty)';
 Response.Content :=
StringReplace(WML_SymbolNotFound,
 '%symbol%',Symbol,[]);
 End;
 Finally
 StockValue.Close;
 End;
end;

Delphi™

11

Here, the stock symbol entered by the user is read from

the QueryFields property of the Request object,

corresponding to a HTTP GET variable, as specified on

the stocksample.wml file. The code then tries to locate

the stock symbol in the example database, and if found,

formats the parameterized WML code accordingly.

If the symbol is not found, an error message is displayed.

Note how the MIME type is set at the beginning and how

the database connection is protected using a Try/Finally

clause. It is important to minimize all error conditions that

cause memory leaks in WebBroker applications.

Creating bitmap images on the fly

WAP phones provide support for primitive monochrome

bitmaps, known as wireless bitmaps (WBMPs). These files

have a simple internal representation (level 0), which

makes it possible to create these images dynamically on

the fly.

When the user has selected a stock symbol and chosen to

display the current pricing, the sample application

provides a link to display a history graph about the

symbol’s performance. The sample application is able to

draw this graph in four variations, depending on the

required time period (3, 6, 9 or 12 months).

This selection is supported by the following

WML code snippet:

<anchor>Stock Graph

 <go href="/scripts/stocksample.exe/stockgraph"

method="get">

 <postfield name="symbol" value="%symbol%"/>

 <postfield name="period" value="$(period)"/>

 </go>

</anchor>:

<select name="period" value="3" title="Graph:">

 <option value="3">3 months</option>

 <option value="6">6 months</option>

 <option value="9">9 months</option>

 <option value="12">12 months</option>

</select>

When the user chooses to display a graph, the control is

transferred to the OnAction event handler of the

StockGraph action on the web module. The action

outputs WML code that includes the stock symbol name

along with the following WML code tag:

<img

src="/scripts/stocksample.exe/getgraph?s=%symbol%&am

p;p=%period%" alt="graph"/>

The tag tells the WAP phone that it should display an

image, which can be retrieved from aURL specified by the

SRC parameter on the tag. Since the URL points to the

sample application, the following event handler code gets

executed:

procedure

TStockSampleWM.StockSampleWMGetGraphAction(Sende

r: TObject;

 Request: TWebRequest; Response: TWebResponse;
 var Handled: Boolean);

Var MemStrm : TMemoryStream;

begin

 MemStrm := TMemoryStream.Create;

 CreateWirelessBitmap(MemStrm);

 MemStrm.Position := 0;

 Response.ContentType := WBMP_ContentType;

 Response.ContentStream := MemStrm;

 Response.SendResponse;

end;

Since a bitmap image is pure binary data, a simple string

variable cannot be used to hold the data. Instead, the

example action uses a memory stream for this purpose, as

Delphi™

12

streams are readily supported by the WebBroker

architecture.

It is again important to note that the MIME type must be

set correctly before returning the bitmap. This time the

MIME type is set to “image/vnd.wap.wbmp”. Also note

that it is not necessary to free the memory stream

explicitly – this is done by the SendResponse method of

the Response object.

Without delving too much into the file format of WBMPs,

the CreateWirelessBitmap method looks like this:

Procedure

TStockSampleWM.CreateWirelessBitmap(MemStrm :

TMemoryStream);

Const Header : Array[0..3] of Char = #0#0#104#20;

Var

 Bmp : Array[1..104,1..20] of Boolean;

 X,Y : Integer;

 Dir : Integer;

 Bit : Integer;

 B : Byte;

Begin

 { clear the bitmap out }

 FillChar(Bmp,SizeOf(Bmp),0);

 { draw X and Y axis }

 For X := 1 to 104 do Bmp[X,20] := True;

 For Y := 1 to 20 do Bmp[1,Y] := True;

 { draw random data }

 Randomize;

 Y := Random(20)+1;

 Dir := Random(10);

 For X := 1 to 104 do Begin

 Bmp[X,Y] := True;

 If (Dir > 4) Then Y := Y+Random(2)+1

 Else Y := Y-Random(2)-1;

 If (Y > 20) Then Y := 20;

 If (Y < 1) Then Y := 1;

 Dir := Random(10);

 End;

 { create WBMP data }

 MemStrm.Write(Header,SizeOf(Header));

 Bit := 7; B := 0;

 For Y := 1 to 20 do Begin

 For X := 1 to 104 do Begin

 If (Bmp[X,Y] = True) Then B := B Or (1 shl Bit);

 Dec(Bit);

 If (Bit < 0) Then Begin

 B := Not B;

 MemStrm.Write(B,SizeOf(B));

 Bit := 7;

 B := 0;

 End;
 End;

 End;

End;

Please note that the method will create a 104 x 20 bitmap

with random data. Random data must be used because

the DBDEMOS example tables don’t contain stock history

data.

Testing the example application

Since setting up a WAP gateway and configuring a real

WAP phone would warrant yet another white paper, this

document uses the Nokia WAP Toolkit to demonstrate

the workings of the example application. The Nokia

toolkit is an efficient phone simulator, based on Java

technology that can be downloaded freely from the Nokia

developer site at www.forum.nokia.com after registration

(there are also other simulators available, please see

Appendix A for further details).

The current version of the Nokia WAP Toolkit, 2.0,

supports two phone models, Nokia 7110 and a

Delphi™

13

“blueprint” model. The latter is set up as the default, so

using it is convenient. Before the simulator can be used

though, the example application’s files need to be copied

to the web server.

In the case of Microsoft IIS 5.0, the files should be copied

as follows:

File Location

stocksample.wml \inetpub\wwwroot

logo.wbmp \inetpub\wwwroot

stocksample.exe \inetpub\scripts

Note: Borland Database Engine (BDE) and the sample

database must also be installed on the web server if it is

a different computer from the one you are doing your

development work with. This may require setting

Windows NT® or Windows 2000 access permissions

for the IUSR_machine user account.

Once all the necessary files are in their correct locations,

the WAP simulator can be started. The default setup looks

like the following:

To start running the example application, choose the

Load Location command from the simulator’s Browser

menu. As the URL, enter:

http://localhost/stocksample.wml

After clicking the OK button, the simulator will start to

load the WML card deck, first briefly displaying the

welcome screen and then the main menu, as shown here:

To specify the stock symbol you wish to view, click the

small button on the virtual phone just under the Option

text.

Delphi™

14

From the menu, choose Edit Selection. If required, use

the tiny arrow button on the phone to make your

selection.

Then, enter one of the following supported stock

symbols:

• UIN

• SCP

• HHOP

• USMD

After entering the stock symbol, choose OK twice to

accept the symbol and then to proceed to the symbol

page. Remember, the symbol page will be dynamically

generated by the Delphi application. The stock data will

be fetched from the dBase® database.

Continuing with another example, a 9-month graph gives

the following output (you might need to scroll the screen

to see the image selection menu):

Delphi™

15

To refresh a new graph (since it was random data), use

the simulator’s Browser / Refresh Card command. Using

Browser / Reload Deck will also work, but this will cause

you to lose the Back command on the microbrowser. To

return to the original page, use the Load Location

command.

Conclusion

WAP is an exciting new technology providing many

interesting possibilities to application developers. Since

WAP has already gained the necessary popularity,

developers can begin to provide WAP solutions to

customers immediately.

The current set of tools also provides good support for

WAP application development. Borland Delphi can be

used to build WAP applications with its flexible

WebBroker architecture, and, beginning development

doesn’t require expensive hardware, since initial testing

can be done with free or low-cost software.

Because of the possibilities, developers are recommended

to take advantage of the current mobile terminal

possibilities. In the future, the possibilities will be even

more amazing.

Glossary

Acronym Description

API Application Programming Interface

BDE Borland® Database Engine

CDMA Code Division Multiple Access

CGI Common Gateway Interface

DTD Document Type Definition

GSM Global System for Mobile

communications

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IIS Internet Information Server

IP Internet Protocol

ISAPI Internet Server API

MIME Multi-purpose Internet Mail Extensions

NSAPI Netscape Server API

SSL Secure Sockets Layer

TCP Transmission Control Protocol

URL Uniform Resource Locator

WAE Wireless Application Environment

WAP Wireless Application Protocol

WBMP Wireless Bitmap

WML Wireless Markup Language

WSP Wireless Session Protocol

WTLS Wireless Transport Layer Security

WTP Wireless Transport Protocol

XML Extended Markup Language

Appendix A

A list of interesting and valuable links for WAP

application developers.

Borland® Delphi™
http://www.borland.com/delphi/

Delphi™

16

WAP Forum
http://www.wapforum.org

WAP technical specifications
http://www.wapforum.org/what/technical.htm

WAP simulators
http://forum.nokia.com

http://developer.phone.com

http://www.winwap.org

WAP gateways
http://www.waplite.com

http://www.realwow.com

WAP phone vendors
http://www.nokia.com

http://www.ericsson.com

http://www.motorola.com

http://www.siemens.com

Other interesting links
http://www.anywhereyougo.com

http://www.ericsson.com/developerszone/

http://www.delphizine.com/features/2000/04/di200004jj_f

/di200004jj_f.asp

Jani Järvinen works as a technical support person for

Borland products in Finland. He is also a local Delphi

trainer and freelance author. He has written to magazines

like Delphi Informant, The Delphi Magazine and Delphi

Developer. He specializes in Windows API and Internet

technologies. He is a Microsoft Certified Professional

(MCP) and a co-author of a Finnish Delphi book aimed at

the professional developer.

Made in Borland®. Copyright © 2001 Borland Software Corporation. All rights
reserved. All Borland brand and product names are trademarks or registered
trademarks of Borland Software Corporation. Java is a trademark or registered
trademark of Sun Microsystems, Inc. in the U.S. and other countries. CORBA is a
trademark or registered trademark of Object Management Group, Inc. in the U.S. and
other countries. 11883

100 Enterprise Way
Scotts Valley, CA 95066-3249
www.borland.com | 831-431-1000

